Luminal is a high-performance machine-learning framework designed with an emphasis on speed, simplicity, and composability, which utilizes static graphs and compiler-driven optimization to effectively manage complex neural networks. By transforming models into a set of minimal "primops"—comprising only 12 fundamental operations—Luminal can then implement compiler passes that swap these with optimized kernels tailored for specific devices, facilitating efficient execution across GPUs and other hardware. The framework incorporates modules, which serve as the foundational components of networks equipped with a standardized forward API, as well as the GraphTensor interface, allowing for typed tensors and graphs to be defined and executed at compile time. Maintaining a deliberately compact and modifiable core, Luminal encourages extensibility through the integration of external compilers that cater to various datatypes, devices, training methods, and quantization techniques. A quick-start guide is available to assist users in cloning the repository, constructing a simple "Hello World" model, or executing larger models like LLaMA 3 with GPU capabilities, thereby making it easier for developers to harness its potential. With its versatile design, Luminal stands out as a powerful tool for both novice and experienced practitioners in machine learning.