Best Database Software for IBM Cognos Analytics

Find and compare the best Database software for IBM Cognos Analytics in 2025

Use the comparison tool below to compare the top Database software for IBM Cognos Analytics on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud BigQuery Reviews

    Google Cloud BigQuery

    Google

    Free ($300 in free credits)
    1,861 Ratings
    See Software
    Learn More
    BigQuery is an advanced and adaptable database solution designed to efficiently manage both structured and semi-structured data in large volumes, making it ideal for diverse applications. It utilizes standard SQL for querying, facilitating seamless integration with existing systems and workflows. As a fully managed service, it alleviates the burdens of database upkeep, allowing organizations to concentrate on extracting valuable insights instead of dealing with infrastructure complexities. New users are offered $300 in free credits to explore BigQuery’s features, allowing them to experiment with both operational and analytical queries to assess its effectiveness for their data storage and retrieval needs. Additionally, BigQuery boasts strong security measures to safeguard sensitive information, even when dealing with extensive datasets.
  • 2
    MongoDB Reviews
    Top Pick
    MongoDB is a versatile, document-oriented, distributed database designed specifically for contemporary application developers and the cloud landscape. It offers unparalleled productivity, enabling teams to ship and iterate products 3 to 5 times faster thanks to its adaptable document data model and a single query interface that caters to diverse needs. Regardless of whether you're serving your very first customer or managing 20 million users globally, you'll be able to meet your performance service level agreements in any setting. The platform simplifies high availability, safeguards data integrity, and adheres to the security and compliance requirements for your critical workloads. Additionally, it features a comprehensive suite of cloud database services that support a broad array of use cases, including transactional processing, analytics, search functionality, and data visualizations. Furthermore, you can easily deploy secure mobile applications with built-in edge-to-cloud synchronization and automatic resolution of conflicts. MongoDB's flexibility allows you to operate it in various environments, from personal laptops to extensive data centers, making it a highly adaptable solution for modern data management challenges.
  • 3
    QuerySurge Reviews
    Top Pick
    QuerySurge is the smart Data Testing solution that automates the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Applications with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Big Data (Hadoop & NoSQL) Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise Application/ERP Testing Features Supported Technologies - 200+ data stores are supported QuerySurge Projects - multi-project support Data Analytics Dashboard - provides insight into your data Query Wizard - no programming required Design Library - take total control of your custom test desig BI Tester - automated business report testing Scheduling - run now, periodically or at a set time Run Dashboard - analyze test runs in real-time Reports - 100s of reports API - full RESTful API DevOps for Data - integrates into your CI/CD pipeline Test Management Integration QuerySurge will help you: - Continuously detect data issues in the delivery pipeline - Dramatically increase data validation coverage - Leverage analytics to optimize your critical data - Improve your data quality at speed
  • 4
    SQL Server Reviews
    Microsoft SQL Server 2019 incorporates both intelligence and security, providing users with added features at no additional cost while ensuring top-tier performance and adaptability for on-premises requirements. You can seamlessly transition to the cloud, taking full advantage of its efficiency and agility without the need to alter your existing code. By leveraging Azure, you can accelerate insight generation and predictive analytics. Development is flexible, allowing you to utilize your preferred technologies, including open-source options, supported by Microsoft's advancements. The platform enables easy data integration into your applications and offers a comprehensive suite of cognitive services that facilitate the creation of human-like intelligence, regardless of data volume. The integration of AI is intrinsic to the data platform, allowing for quicker insight extraction from both on-premises and cloud-stored data. By combining your unique enterprise data with global data, you can foster an organization that is driven by intelligence. The dynamic data platform provides a consistent user experience across various environments, expediting the time it takes to bring innovations to market; this allows you to develop your applications and deploy them in any environment you choose, enhancing overall operational efficiency.
  • 5
    Amazon Athena Reviews
    Amazon Athena serves as an interactive query service that simplifies the process of analyzing data stored in Amazon S3 through the use of standard SQL. As a serverless service, it eliminates the need for infrastructure management, allowing users to pay solely for the queries they execute. The user-friendly interface enables you to simply point to your data in Amazon S3, establish the schema, and begin querying with standard SQL commands, with most results returning in mere seconds. Athena negates the requirement for intricate ETL processes to prepare data for analysis, making it accessible for anyone possessing SQL skills to swiftly examine large datasets. Additionally, Athena integrates seamlessly with AWS Glue Data Catalog, which facilitates the creation of a consolidated metadata repository across multiple services. This integration allows users to crawl data sources to identify schemas, update the Catalog with new and modified table and partition definitions, and manage schema versioning effectively. Not only does this streamline data management, but it also enhances the overall efficiency of data analysis within the AWS ecosystem.
  • 6
    OpenText Analytics Database (Vertica) Reviews
    OpenText Analytics Database is a cutting-edge analytics platform designed to accelerate decision-making and operational efficiency through fast, real-time data processing and advanced machine learning. Organizations benefit from its flexible deployment options, including on-premises, hybrid, and multi-cloud environments, enabling them to tailor analytics infrastructure to their specific needs and lower overall costs. The platform’s massively parallel processing (MPP) architecture delivers lightning-fast query performance across large, complex datasets. It supports columnar storage and data lakehouse compatibility, allowing seamless analysis of data stored in various formats such as Parquet, ORC, and AVRO. Users can interact with data using familiar languages like SQL, R, Python, Java, and C/C++, making it accessible for both technical and business users. In-database machine learning capabilities allow for building and deploying predictive models without moving data, providing real-time insights. Additional analytics functions include time series, geospatial, and event-pattern matching, enabling deep and diverse data exploration. OpenText Analytics Database is ideal for organizations looking to harness AI and analytics to drive smarter business decisions.
  • 7
    IBM Db2 Reviews
    IBM Db2 encompasses a suite of data management solutions, prominently featuring the Db2 relational database. These offerings incorporate AI-driven functionalities designed to streamline the management of both structured and unstructured data across various on-premises and multicloud settings. By simplifying data accessibility, the Db2 suite empowers businesses to leverage the advantages of AI effectively. Most components of the Db2 family are integrated within the IBM Cloud Pak® for Data platform, available either as additional features or as built-in data source services, ensuring that nearly all data is accessible across hybrid or multicloud frameworks to support AI-driven applications. You can easily unify your transactional data repositories and swiftly extract insights through intelligent, universal querying across diverse data sources. The multimodel functionality helps reduce expenses by removing the necessity for data replication and migration. Additionally, Db2 offers enhanced flexibility, allowing for deployment on any cloud service provider, which further optimizes operational agility and responsiveness. This versatility in deployment options ensures that businesses can adapt their data management strategies as their needs evolve.
  • 8
    SQL Reviews
    SQL is a specialized programming language designed specifically for the purpose of retrieving, organizing, and modifying data within relational databases and the systems that manage them. Its use is essential for effective database management and interaction.
  • 9
    MariaDB Reviews
    MariaDB Platform is an enterprise-level open-source database solution. It supports transactional, analytical, and hybrid workloads, as well as relational and JSON data models. It can scale from standalone databases to data warehouses to fully distributed SQL, which can execute millions of transactions per second and perform interactive, ad-hoc analytics on billions upon billions of rows. MariaDB can be deployed on prem-on commodity hardware. It is also available on all major public cloud providers and MariaDB SkySQL, a fully managed cloud database. MariaDB.com provides more information.
  • Previous
  • You're on page 1
  • Next