Best Database Software for Apache Parquet

Find and compare the best Database software for Apache Parquet in 2025

Use the comparison tool below to compare the top Database software for Apache Parquet on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    StarfishETL Reviews

    StarfishETL

    StarfishETL

    400/month
    StarfishETL is a Cloud iPaaS solution, which gives it the unique ability to connect virtually any kind of solution to any other kind of solution as long as both of those applications have an API. This gives StarfishETL customers ultimate control over their data projects, with the ability to build more unique and scalable data connections.
  • 2
    Apache DataFusion Reviews

    Apache DataFusion

    Apache Software Foundation

    Free
    Apache DataFusion is a versatile and efficient query engine crafted in Rust, leveraging Apache Arrow for its in-memory data representation. It caters to developers engaged in creating data-focused systems, including databases, data frames, machine learning models, and real-time streaming applications. With its SQL and DataFrame APIs, DataFusion features a vectorized, multi-threaded execution engine that processes data streams efficiently and supports various partitioned data sources. It is compatible with several native formats such as CSV, Parquet, JSON, and Avro, and facilitates smooth integration with popular object storage solutions like AWS S3, Azure Blob Storage, and Google Cloud Storage. The architecture includes a robust query planner and an advanced optimizer that boasts capabilities such as expression coercion, simplification, and optimizations that consider distribution and sorting, along with automatic reordering of joins. Furthermore, DataFusion allows for extensive customization, enabling developers to incorporate user-defined scalar, aggregate, and window functions along with custom data sources and query languages, making it a powerful tool for diverse data processing needs. This adaptability ensures that developers can tailor the engine to fit their unique use cases effectively.
  • 3
    IBM Db2 Event Store Reviews
    IBM Db2 Event Store is a cloud-native database system specifically engineered to manage vast quantities of structured data formatted in Apache Parquet. Its design is focused on optimizing event-driven data processing and analysis, enabling the system to capture, evaluate, and retain over 250 billion events daily. This high-performance data repository is both adaptable and scalable, allowing it to respond swiftly to evolving business demands. Utilizing the Db2 Event Store service, users can establish these data repositories within their Cloud Pak for Data clusters, facilitating effective data governance and enabling comprehensive analysis. The system is capable of rapidly ingesting substantial volumes of streaming data, processing up to one million inserts per second per node, which is essential for real-time analytics that incorporate machine learning capabilities. Furthermore, it allows for the real-time analysis of data from various medical devices, ultimately leading to improved health outcomes for patients, while simultaneously offering cost-efficiency in data storage management. Such features make IBM Db2 Event Store a powerful tool for organizations looking to leverage data-driven insights effectively.
  • 4
    SDF Reviews
    SDF serves as a robust platform for developers focused on data, improving SQL understanding across various organizations and empowering data teams to maximize their data's capabilities. It features a transformative layer that simplifies the processes of writing and managing queries, along with an analytical database engine that enables local execution and an accelerator that enhances transformation tasks. Additionally, SDF includes proactive measures for quality and governance, such as comprehensive reports, contracts, and impact analysis tools, to maintain data integrity and ensure compliance with regulations. By encapsulating business logic in code, SDF aids in the classification and management of different data types, thereby improving the clarity and sustainability of data models. Furthermore, it integrates effortlessly into pre-existing data workflows, accommodating multiple SQL dialects and cloud environments, and is built to scale alongside the evolving demands of data teams. The platform's open-core architecture, constructed on Apache DataFusion, not only promotes customization and extensibility but also encourages a collaborative environment for data development, making it an invaluable resource for organizations aiming to enhance their data strategies. Consequently, SDF plays a pivotal role in fostering innovation and efficiency within data management processes.
  • Previous
  • You're on page 1
  • Next