Best Data Warehouse Software for Apache Hive

Find and compare the best Data Warehouse software for Apache Hive in 2025

Use the comparison tool below to compare the top Data Warehouse software for Apache Hive on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    ClicData Reviews

    ClicData

    ClicData

    $25.00/month
    ClicData is the first cloud-based 100% cloud-based Business Intelligence software and data management software. Our data warehouse makes it easy to combine, transform, and merge data from any source. You can create interactive dashboards that are self-updated and shareable with your manager, team, or customers in multiple ways. Email delivery schedule, export, or dynamic dashboards via LiveLinks. ClicData automates everything, including data connection, data refresh, management, and scheduling routines.
  • 2
    Apache Doris Reviews

    Apache Doris

    The Apache Software Foundation

    Free
    Apache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale. It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation. With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently. Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL. Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes. Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management. Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management.
  • 3
    Stackable Reviews
    The Stackable data platform was crafted with a focus on flexibility and openness. It offers a carefully selected range of top-notch open source data applications, including Apache Kafka, Apache Druid, Trino, and Apache Spark. Unlike many competitors that either promote their proprietary solutions or enhance vendor dependence, Stackable embraces a more innovative strategy. All data applications are designed to integrate effortlessly and can be added or removed with remarkable speed. Built on Kubernetes, it is capable of operating in any environment, whether on-premises or in the cloud. To initiate your first Stackable data platform, all you require is stackablectl along with a Kubernetes cluster. In just a few minutes, you will be poised to begin working with your data. You can set up your one-line startup command right here. Much like kubectl, stackablectl is tailored for seamless interaction with the Stackable Data Platform. Utilize this command line tool for deploying and managing stackable data applications on Kubernetes. With stackablectl, you have the ability to create, delete, and update components efficiently, ensuring a smooth operational experience for your data management needs. The versatility and ease of use make it an excellent choice for developers and data engineers alike.
  • 4
    Vaultspeed Reviews

    Vaultspeed

    VaultSpeed

    €600 per user per month
    Achieve rapid automation for your data warehouse with Vaultspeed, an innovative tool adhering to the Data Vault 2.0 standards and backed by a decade of practical experience in data integration. This solution supports a comprehensive range of Data Vault 2.0 objects and offers various implementation options. It enables the swift generation of high-quality code across all scenarios within a Data Vault 2.0 integration framework. By integrating Vaultspeed into your existing setup, you can maximize your investments in both tools and expertise. You will also enjoy guaranteed compliance with the most recent Data Vault 2.0 standard, thanks to our ongoing collaboration with Scalefree, the authoritative knowledge source for the Data Vault 2.0 community. The Data Vault 2.0 modeling methodology simplifies model components to their essential elements, facilitating a uniform loading pattern and consistent database structure. Furthermore, Vaultspeed utilizes a template system that comprehensively understands the various object types and includes straightforward configuration settings, enhancing user experience and efficiency in data management.
  • 5
    Lyftrondata Reviews
    If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy.
  • 6
    IBM watsonx.data Reviews
    Leverage your data, regardless of its location, with an open and hybrid data lakehouse designed specifically for AI and analytics. Seamlessly integrate data from various sources and formats, all accessible through a unified entry point featuring a shared metadata layer. Enhance both cost efficiency and performance by aligning specific workloads with the most suitable query engines. Accelerate the discovery of generative AI insights with integrated natural-language semantic search, eliminating the need for SQL queries. Ensure that your AI applications are built on trusted data to enhance their relevance and accuracy. Maximize the potential of all your data, wherever it exists. Combining the rapidity of a data warehouse with the adaptability of a data lake, watsonx.data is engineered to facilitate the expansion of AI and analytics capabilities throughout your organization. Select the most appropriate engines tailored to your workloads to optimize your strategy. Enjoy the flexibility to manage expenses, performance, and features with access to an array of open engines, such as Presto, Presto C++, Spark Milvus, and many others, ensuring that your tools align perfectly with your data needs. This comprehensive approach allows for innovative solutions that can drive your business forward.
  • 7
    Cloudera Data Warehouse Reviews
    Cloudera Data Warehouse is a cloud-native, self-service analytics platform designed to empower IT departments to quickly provide query functionalities to BI analysts, allowing users to transition from no query capabilities to active querying within minutes. It accommodates all forms of data, including structured, semi-structured, unstructured, real-time, and batch data, and it scales efficiently from gigabytes to petabytes based on demand. This solution is seamlessly integrated with various services, including streaming, data engineering, and AI, while maintaining a cohesive framework for security, governance, and metadata across private, public, or hybrid cloud environments. Each virtual warehouse, whether a data warehouse or mart, is autonomously configured and optimized, ensuring that different workloads remain independent and do not disrupt one another. Cloudera utilizes a range of open-source engines, such as Hive, Impala, Kudu, and Druid, along with tools like Hue, to facilitate diverse analytical tasks, which span from creating dashboards and conducting operational analytics to engaging in research and exploration of extensive event or time-series data. This comprehensive approach not only enhances data accessibility but also significantly improves the efficiency of data analysis across various sectors.
  • 8
    CelerData Cloud Reviews
    CelerData is an advanced SQL engine designed to enable high-performance analytics directly on data lakehouses, removing the necessity for conventional data warehouse ingestion processes. It achieves impressive query speeds in mere seconds, facilitates on-the-fly JOIN operations without incurring expensive denormalization, and streamlines system architecture by enabling users to execute intensive workloads on open format tables. Based on the open-source StarRocks engine, this platform surpasses older query engines like Trino, ClickHouse, and Apache Druid in terms of latency, concurrency, and cost efficiency. With its cloud-managed service operating within your own VPC, users maintain control over their infrastructure and data ownership while CelerData manages the upkeep and optimization tasks. This platform is poised to support real-time OLAP, business intelligence, and customer-facing analytics applications, and it has garnered the trust of major enterprise clients, such as Pinterest, Coinbase, and Fanatics, who have realized significant improvements in latency and cost savings. Beyond enhancing performance, CelerData’s capabilities allow businesses to harness their data more effectively, ensuring they remain competitive in a data-driven landscape.
  • 9
    Data Virtuality Reviews
    Connect and centralize data. Transform your data landscape into a flexible powerhouse. Data Virtuality is a data integration platform that allows for instant data access, data centralization, and data governance. Logical Data Warehouse combines materialization and virtualization to provide the best performance. For high data quality, governance, and speed-to-market, create your single source data truth by adding a virtual layer to your existing data environment. Hosted on-premises or in the cloud. Data Virtuality offers three modules: Pipes Professional, Pipes Professional, or Logical Data Warehouse. You can cut down on development time up to 80% Access any data in seconds and automate data workflows with SQL. Rapid BI Prototyping allows for a significantly faster time to market. Data quality is essential for consistent, accurate, and complete data. Metadata repositories can be used to improve master data management.
  • 10
    Apache Kylin Reviews

    Apache Kylin

    Apache Software Foundation

    Apache Kylin™ is a distributed, open-source Analytical Data Warehouse designed for Big Data, aimed at delivering OLAP (Online Analytical Processing) capabilities in the modern big data landscape. By enhancing multi-dimensional cube technology and precalculation methods on platforms like Hadoop and Spark, Kylin maintains a consistent query performance, even as data volumes continue to expand. This innovation reduces query response times from several minutes to just milliseconds, effectively reintroducing online analytics into the realm of big data. Capable of processing over 10 billion rows in under a second, Kylin eliminates the delays previously associated with report generation, facilitating timely decision-making. It seamlessly integrates data stored on Hadoop with popular BI tools such as Tableau, PowerBI/Excel, MSTR, QlikSense, Hue, and SuperSet, significantly accelerating business intelligence operations on Hadoop. As a robust Analytical Data Warehouse, Kylin supports ANSI SQL queries on Hadoop/Spark and encompasses a wide array of ANSI SQL functions. Moreover, Kylin’s architecture allows it to handle thousands of simultaneous interactive queries with minimal resource usage, ensuring efficient analytics even under heavy loads. This efficiency positions Kylin as an essential tool for organizations seeking to leverage their data for strategic insights.
  • 11
    Apache Hudi Reviews

    Apache Hudi

    Apache Corporation

    Hudi serves as a robust platform for constructing streaming data lakes equipped with incremental data pipelines, all while utilizing a self-managing database layer that is finely tuned for lake engines and conventional batch processing. It effectively keeps a timeline of every action taken on the table at various moments, enabling immediate views of the data while also facilitating the efficient retrieval of records in the order they were received. Each Hudi instant is composed of several essential components, allowing for streamlined operations. The platform excels in performing efficient upserts by consistently linking a specific hoodie key to a corresponding file ID through an indexing system. This relationship between record key and file group or file ID remains constant once the initial version of a record is written to a file, ensuring stability in data management. Consequently, the designated file group encompasses all iterations of a collection of records, allowing for seamless data versioning and retrieval. This design enhances both the reliability and efficiency of data operations within the Hudi ecosystem.
  • 12
    e6data Reviews
    The market experiences limited competition as a result of significant entry barriers, specialized expertise, substantial capital requirements, and extended time-to-market. Moreover, current platforms offer similar pricing and performance, which diminishes the motivation for users to transition. Transitioning from one SQL dialect to another can take months of intensive work. There is a demand for format-independent computing that can seamlessly work with all major open standards. Data leaders in enterprises are currently facing an extraordinary surge in the need for data intelligence. They are taken aback to discover that a mere 10% of their most demanding, compute-heavy tasks account for 80% of the costs, engineering resources, and stakeholder grievances. Regrettably, these workloads are also essential and cannot be neglected. e6data enhances the return on investment for a company's current data platforms and infrastructure. Notably, e6data’s format-agnostic computing stands out for its remarkable efficiency and performance across various leading data lakehouse table formats, thereby providing a significant advantage in optimizing enterprise operations. This innovative solution positions organizations to better manage their data-driven demands while maximizing their existing resources.
  • Previous
  • You're on page 1
  • Next