Best Data Virtualization Software for Tableau

Find and compare the best Data Virtualization software for Tableau in 2025

Use the comparison tool below to compare the top Data Virtualization software for Tableau on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    data.world Reviews

    data.world

    data.world

    $12 per month
    data.world is a cloud-native service meticulously designed for contemporary data architectures, ensuring seamless management of updates, migrations, and ongoing maintenance. This streamlined setup process is complemented by a vast and expanding ecosystem of pre-built integrations with all major cloud data warehouses. When prompt results are essential, your team should concentrate on addressing genuine business challenges rather than grappling with cumbersome data management software. data.world simplifies the process for all users, not just data experts, enabling them to obtain clear, precise, and prompt answers to various business inquiries. Our platform features a cloud-based data catalog that connects isolated and distributed data to well-known business concepts, fostering a cohesive knowledge base that everyone can access, comprehend, and utilize. Furthermore, beyond our enterprise solutions, data.world hosts the largest collaborative open data community globally, where individuals collaborate on diverse projects ranging from social bot detection to acclaimed data journalism initiatives, promoting innovation and shared learning. This unique environment encourages knowledge sharing and empowers users to leverage data in creative and impactful ways.
  • 2
    Querona Reviews
    We make BI and Big Data analytics easier and more efficient. Our goal is to empower business users, make BI specialists and always-busy business more independent when solving data-driven business problems. Querona is a solution for those who have ever been frustrated by a lack in data, slow or tedious report generation, or a long queue to their BI specialist. Querona has a built-in Big Data engine that can handle increasing data volumes. Repeatable queries can be stored and calculated in advance. Querona automatically suggests improvements to queries, making optimization easier. Querona empowers data scientists and business analysts by giving them self-service. They can quickly create and prototype data models, add data sources, optimize queries, and dig into raw data. It is possible to use less IT. Users can now access live data regardless of where it is stored. Querona can cache data if databases are too busy to query live.
  • 3
    Informatica Intelligent Cloud Services Reviews
    Elevate your integration capabilities with the most extensive, microservices-oriented, API-centric, and AI-enhanced enterprise iPaaS available. Utilizing the advanced CLAIRE engine, IICS accommodates a wide array of cloud-native integration needs, including data, application, API integration, and Master Data Management (MDM). Our global reach and support for multiple cloud environments extend to major platforms like Microsoft Azure, AWS, Google Cloud Platform, and Snowflake. With unmatched enterprise scalability and a robust security framework backed by numerous certifications, IICS stands as a pillar of trust in the industry. This enterprise iPaaS features a suite of cloud data management solutions designed to boost efficiency while enhancing speed and scalability. Once again, Informatica has been recognized as a Leader in the Gartner 2020 Magic Quadrant for Enterprise iPaaS, reinforcing our commitment to excellence. Experience firsthand insights and testimonials about Informatica Intelligent Cloud Services, and take advantage of our complimentary cloud offerings. Our customers remain our top priority in all facets, including products, services, and support, which is why we've consistently achieved outstanding customer loyalty ratings for over a decade. Join us in redefining integration excellence and discover how we can help transform your business operations.
  • 4
    Lyftrondata Reviews
    If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy.
  • 5
    Data Virtuality Reviews
    Connect and centralize data. Transform your data landscape into a flexible powerhouse. Data Virtuality is a data integration platform that allows for instant data access, data centralization, and data governance. Logical Data Warehouse combines materialization and virtualization to provide the best performance. For high data quality, governance, and speed-to-market, create your single source data truth by adding a virtual layer to your existing data environment. Hosted on-premises or in the cloud. Data Virtuality offers three modules: Pipes Professional, Pipes Professional, or Logical Data Warehouse. You can cut down on development time up to 80% Access any data in seconds and automate data workflows with SQL. Rapid BI Prototyping allows for a significantly faster time to market. Data quality is essential for consistent, accurate, and complete data. Metadata repositories can be used to improve master data management.
  • 6
    AtScale Reviews
    AtScale streamlines and speeds up business intelligence processes, leading to quicker insights, improved decision-making, and enhanced returns on your cloud analytics investments. It removes the need for tedious data engineering tasks, such as gathering, maintaining, and preparing data for analysis. By centralizing business definitions, AtScale ensures that KPI reporting remains consistent across various BI tools. The platform not only accelerates the time it takes to gain insights from data but also optimizes the management of cloud computing expenses. Additionally, it allows organizations to utilize their existing data security protocols for analytics, regardless of where the data is stored. AtScale’s Insights workbooks and models enable users to conduct Cloud OLAP multidimensional analysis on datasets sourced from numerous providers without the requirement for data preparation or engineering. With user-friendly built-in dimensions and measures, businesses can swiftly extract valuable insights that inform their strategic decisions, enhancing their overall operational efficiency. This capability empowers teams to focus on analysis rather than data handling, leading to sustained growth and innovation.
  • 7
    Denodo Reviews

    Denodo

    Denodo Technologies

    The fundamental technology that powers contemporary solutions for data integration and management is designed to swiftly link various structured and unstructured data sources. It allows for the comprehensive cataloging of your entire data environment, ensuring that data remains within its original sources and is retrieved as needed, eliminating the requirement for duplicate copies. Users can construct data models tailored to their needs, even when drawing from multiple data sources, while also concealing the intricacies of back-end systems from end users. The virtual model can be securely accessed and utilized through standard SQL alongside other formats such as REST, SOAP, and OData, promoting easy access to diverse data types. It features complete data integration and modeling capabilities, along with an Active Data Catalog that enables self-service for data and metadata exploration and preparation. Furthermore, it incorporates robust data security and governance measures, ensures rapid and intelligent execution of data queries, and provides real-time data delivery in various formats. The system also supports the establishment of data marketplaces and effectively decouples business applications from data systems, paving the way for more informed, data-driven decision-making strategies. This innovative approach enhances the overall agility and responsiveness of organizations in managing their data assets.
  • 8
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • Previous
  • You're on page 1
  • Next