Best Data Science Software for Linux of 2025

Find and compare the best Data Science software for Linux in 2025

Use the comparison tool below to compare the top Data Science software for Linux on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Neural Designer Reviews

    Neural Designer

    Artelnics

    $2495/year (per user)
    2 Ratings
    Neural Designer is a data-science and machine learning platform that allows you to build, train, deploy, and maintain neural network models. This tool was created to allow innovative companies and research centres to focus on their applications, not on programming algorithms or programming techniques. Neural Designer does not require you to code or create block diagrams. Instead, the interface guides users through a series of clearly defined steps. Machine Learning can be applied in different industries. These are some examples of machine learning solutions: - In engineering: Performance optimization, quality improvement and fault detection - In banking, insurance: churn prevention and customer targeting. - In healthcare: medical diagnosis, prognosis and activity recognition, microarray analysis and drug design. Neural Designer's strength is its ability to intuitively build predictive models and perform complex operations.
  • 2
    Dataiku Reviews
    Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
  • 3
    Stata Reviews

    Stata

    StataCorp LLC

    $48.00/6-month/student
    Stata delivers everything you need for reproducible data analysis—powerful statistics, visualization, data manipulation, and automated reporting—all in one intuitive platform. Stata is quick and accurate. The extensive graphical interface makes it easy to use, but is also fully programable. Stata's menus, dialogs and buttons give you the best of both worlds. All Stata's data management, statistical, and graphical features are easy to access by dragging and dropping or point-and-click. To quickly execute commands, you can use Stata's intuitive command syntax. You can log all actions and results, regardless of whether you use the menus or dialogs. This will ensure reproducibility and integrity in your analysis. Stata also offers complete command-line programming and programming capabilities, including a full matrix language. All the commands that Stata ships with are available to you, whether you want to create new Stata commands or script your analysis.
  • 4
    Azure Data Science Virtual Machines Reviews
    DSVMs, or Data Science Virtual Machines, are pre-configured Azure Virtual Machine images equipped with a variety of widely-used tools for data analysis, machine learning, and AI training. They ensure a uniform setup across teams, encouraging seamless collaboration and sharing of resources while leveraging Azure's scalability and management features. Offering a near-zero setup experience, these VMs provide a fully cloud-based desktop environment tailored for data science applications. They facilitate rapid and low-friction deployment suitable for both classroom settings and online learning environments. Users can execute analytics tasks on diverse Azure hardware configurations, benefiting from both vertical and horizontal scaling options. Moreover, the pricing structure allows individuals to pay only for the resources they utilize, ensuring cost-effectiveness. With readily available GPU clusters that come pre-configured for deep learning tasks, users can hit the ground running. Additionally, the VMs include various examples, templates, and sample notebooks crafted or validated by Microsoft, which aids in the smooth onboarding process for numerous tools and capabilities, including but not limited to Neural Networks through frameworks like PyTorch and TensorFlow, as well as data manipulation using R, Python, Julia, and SQL Server. This comprehensive package not only accelerates the learning curve for newcomers but also enhances productivity for seasoned data scientists.
  • 5
    JetBrains Datalore Reviews

    JetBrains Datalore

    JetBrains

    $19.90 per month
    Datalore is a platform for collaborative data science and analytics that aims to improve the entire analytics workflow and make working with data more enjoyable for both data scientists as well as data-savvy business teams. Datalore is a collaborative platform that focuses on data teams workflow. It offers technical-savvy business users the opportunity to work with data teams using no-code and low-code, as well as the power of Jupyter Notebooks. Datalore allows business users to perform analytic self-service. They can work with data using SQL or no-code cells, create reports, and dive deep into data. It allows core data teams to focus on simpler tasks. Datalore allows data scientists and analysts to share their results with ML Engineers. You can share your code with ML Engineers on powerful CPUs and GPUs, and you can collaborate with your colleagues in real time.
  • 6
    Coder Reviews
    Coder offers self-hosted cloud development environments, provisioned as code and ready for developers from day one. Favored by enterprises, Coder is open source and can be deployed air-gapped on-premise or in your cloud, ensuring powerful infrastructure access without sacrificing governance. By shifting local development and source code to a centralized infrastructure, Coder allows developers to access their remote environments via their preferred desktop or web-based IDE. This approach enhances developer experience, productivity, and security. With Coder’s ephemeral development environments, provisioned as code from pre-defined templates, developers can instantly create new workspaces. This streamlines the process, eliminating the need to deal with local dependency versioning issues or lengthy security approvals. Coder enables developers to onboard or switch projects in a matter of minutes.
  • 7
    Kedro Reviews
    Kedro serves as a robust framework for establishing clean data science practices. By integrating principles from software engineering, it enhances the efficiency of machine-learning initiatives. Within a Kedro project, you will find a structured approach to managing intricate data workflows and machine-learning pipelines. This allows you to minimize the time spent on cumbersome implementation tasks and concentrate on addressing innovative challenges. Kedro also standardizes the creation of data science code, fostering effective collaboration among team members in problem-solving endeavors. Transitioning smoothly from development to production becomes effortless with exploratory code that can evolve into reproducible, maintainable, and modular experiments. Additionally, Kedro features a set of lightweight data connectors designed to facilitate the saving and loading of data across various file formats and storage systems, making data management more versatile and user-friendly. Ultimately, this framework empowers data scientists to work more effectively and with greater confidence in their projects.
  • 8
    MLJAR Studio Reviews

    MLJAR Studio

    MLJAR

    $20 per month
    This desktop application integrates Jupyter Notebook and Python, allowing for a seamless one-click installation. It features engaging code snippets alongside an AI assistant that enhances coding efficiency, making it an ideal tool for data science endeavors. We have meticulously developed over 100 interactive code recipes tailored for your Data Science projects, which can identify available packages within your current environment. With a single click, you can install any required modules, streamlining your workflow significantly. Users can easily create and manipulate all variables present in their Python session, while these interactive recipes expedite the completion of tasks. The AI Assistant, equipped with knowledge of your active Python session, variables, and modules, is designed to address data challenges using the Python programming language. It offers support for various tasks, including plotting, data loading, data wrangling, and machine learning. If you encounter code issues, simply click the Fix button, and the AI assistant will analyze the problem and suggest a viable solution, making your coding experience smoother and more productive. Additionally, this innovative tool not only simplifies coding but also enhances your learning curve in data science.
  • 9
    SAS Visual Statistics Reviews
    SAS Visual Statistics allows for collaborative data exploration among multiple users, enabling them to interactively develop and refine predictive models. Data scientists and statisticians can leverage the most suitable analytical techniques to act on insights at a detailed level. Consequently, you will discover insights at remarkable speeds, uncovering new opportunities for revenue growth. The platform facilitates the construction and fine-tuning of models aimed at specific demographics or segments while simultaneously running various scenarios. This capability encourages users to pose numerous what-if questions to enhance outcomes. Additionally, results can be operationalized through automatically generated score code. Users are empowered to visually manipulate data by adding or adjusting variables, eliminating outliers, and more. Changes can be instantly assessed for their impact on the model's predictive accuracy, allowing for swift adjustments. Data science teams enjoy the ultimate flexibility by working in their preferred programming languages, maximizing their expertise. Ultimately, SAS Visual Statistics integrates all analytical resources, making it a comprehensive solution for data-driven decision-making. It fosters an environment where innovation can thrive, pushing the boundaries of what data analysis can achieve.
  • 10
    SAS Viya Reviews
    SAS® Viya® offers a robust and scalable analytics platform that is both efficient and easy to implement, allowing organizations to address a variety of business challenges. The insights generated automatically help in pinpointing the most frequently used variables across all models, highlighting key variables selected along with evaluation outcomes for each model. With the integration of natural language generation, project summaries are produced in straightforward language, which simplifies the interpretation of reports for users. Moreover, members of the analytics team can enhance the insights report with project notes, promoting better communication and teamwork. SAS further enables the integration of open source code within analyses, allowing users to utilize open source algorithms effortlessly in its platform. This flexibility encourages collaboration throughout your organization, as users are free to program in their preferred language. Additionally, you can leverage SAS Deep Learning with Python (DLPy), an open-source package available on GitHub, to expand your analytical capabilities even further. By using these tools, businesses can significantly enhance their data-driven decision-making processes.
  • 11
    JetBrains DataSpell Reviews
    Easily switch between command and editor modes using just one keystroke while navigating through cells with arrow keys. Take advantage of all standard Jupyter shortcuts for a smoother experience. Experience fully interactive outputs positioned directly beneath the cell for enhanced visibility. When working within code cells, benefit from intelligent code suggestions, real-time error detection, quick-fix options, streamlined navigation, and many additional features. You can operate with local Jupyter notebooks or effortlessly connect to remote Jupyter, JupyterHub, or JupyterLab servers directly within the IDE. Execute Python scripts or any expressions interactively in a Python Console, observing outputs and variable states as they happen. Split your Python scripts into code cells using the #%% separator, allowing you to execute them one at a time like in a Jupyter notebook. Additionally, explore DataFrames and visual representations in situ through interactive controls, all while enjoying support for a wide range of popular Python scientific libraries, including Plotly, Bokeh, Altair, ipywidgets, and many others, for a comprehensive data analysis experience. This integration allows for a more efficient workflow and enhances productivity while coding.
  • 12
    Analance Reviews
    Analance is a comprehensive and scalable solution that integrates Data Science, Advanced Analytics, Business Intelligence, and Data Management into one seamless, self-service platform. Designed to empower users with essential analytical capabilities, it ensures that data insights are readily available to all, maintains consistent performance as user demands expand, and meets ongoing business goals within a singular framework. Analance is dedicated to transforming high-quality data into precise predictions, providing both seasoned data scientists and novice users with intuitive, point-and-click pre-built algorithms alongside a flexible environment for custom coding. By bridging the gap between advanced analytics and user accessibility, Analance facilitates informed decision-making across organizations. Company – Overview Ducen IT supports Business and IT professionals in Fortune 1000 companies by offering advanced analytics, business intelligence, and data management through its distinctive, all-encompassing data science platform known as Analance.
  • 13
    Amadea Reviews
    Amadea technology boasts the industry's quickest real-time calculation and modeling engine, enabling accelerated development, deployment, and automation of analytics projects within a unified platform. The key to successful analytical initiatives lies in data quality, and with the ISoft real-time calculation engine, Amadea empowers organizations to handle vast and intricate datasets instantly, regardless of size. ISoft's inception stemmed from the understanding that effective analytical projects require active participation from business users at every phase. Built on a no-code interface that is user-friendly for everyone, Amadea encourages all stakeholders in analytical endeavors to contribute meaningfully. With the unmatched speed of its real-time calculation capabilities, Amadea allows for the simultaneous specification, prototyping, and construction of data applications. Furthermore, the platform is capable of executing standard calculations at an impressive rate of 10 million lines per second per core, solidifying its position as the fastest real-time data analysis engine available today. Therefore, leveraging Amadea can significantly enhance the efficiency and effectiveness of your analytics projects.
  • 14
    Microsoft R Open Reviews
    Microsoft is actively advancing its R-related offerings, evident not only in the latest release of Machine Learning Server but also in the newest versions of Microsoft R Client and Microsoft R Open. Furthermore, R and Python integration is available within SQL Server Machine Learning Services for both Windows and Linux platforms, alongside R support in Azure SQL Database. The R components maintain backward compatibility, allowing users to execute existing R scripts on newer versions, as long as they do not rely on outdated packages or platforms that are no longer supported, or on known problems that necessitate workarounds or code modifications. Microsoft R Open serves as the enhanced version of R provided by Microsoft Corporation, with the most recent release, Microsoft R Open 4.0.2, built on the statistical language R-4.0.2, offering additional features for better performance, reproducibility, and platform compatibility. This version ensures compatibility with all packages, scripts, and applications built on R-4.0.2, making it a reliable choice for developers and data scientists alike. Overall, Microsoft's dedication to R fosters an environment of continuous improvement and support for its users.
  • Previous
  • You're on page 1
  • Next