Best Data Science Software for IBM Cloud

Find and compare the best Data Science software for IBM Cloud in 2025

Use the comparison tool below to compare the top Data Science software for IBM Cloud on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 2
    IBM Watson Studio Reviews
    Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
  • 3
    IBM ILOG CPLEX Optimization Studio Reviews
    Create and resolve intricate optimization models to determine the most effective strategies. IBM® ILOG® CPLEX® Optimization Studio leverages decision optimization technology to enhance your business choices, allowing for swift model development and deployment while crafting practical applications that can markedly boost business performance. How does it achieve this? This platform serves as a prescriptive analytics tool that facilitates the quick creation and implementation of decision optimization models utilizing mathematical and constraint programming techniques. It features a comprehensive integrated development environment that supports Optimization Programming Language (OPL) along with the powerful CPLEX and CP Optimizer solvers. Essentially, it transforms data science into actionable decisions. Additionally, IBM Decision Optimization is incorporated within Cloud Pak for Data, enabling the fusion of optimization and machine learning within a cohesive framework, IBM Watson® Studio, which offers capabilities for AI-enhanced optimization modeling. This combination not only accelerates decision-making but also optimizes operational efficiency across various business sectors.
  • 4
    Knoldus Reviews
    The largest team in the world specializing in Functional Programming and Fast Data engineers is dedicated to crafting tailored, high-performance solutions. Our approach transitions ideas into tangible outcomes through swift prototyping and concept validation. We establish a robust ecosystem that facilitates large-scale delivery through continuous integration and deployment, aligning with your specific needs. By comprehending strategic objectives and the requirements of stakeholders, we foster a unified vision. We aim to efficiently deploy minimum viable products (MVPs) to expedite product launches, ensuring an effective approach. Our commitment to ongoing enhancements allows us to adapt to emerging requirements seamlessly. The creation of exceptional products and the provision of unparalleled engineering services are made possible by leveraging cutting-edge tools and technologies. We empower you to seize opportunities, tackle competitive challenges, and effectively scale your successful investments by minimizing friction within your organizational structures, processes, and culture. Knoldus collaborates with clients to uncover and harness significant value and insights from data while also ensuring the adaptability and responsiveness of their strategies in a rapidly changing market.
  • 5
    NVIDIA RAPIDS Reviews
    The RAPIDS software library suite, designed on CUDA-X AI, empowers users to run comprehensive data science and analytics workflows entirely on GPUs. It utilizes NVIDIA® CUDA® primitives for optimizing low-level computations while providing user-friendly Python interfaces that leverage GPU parallelism and high-speed memory access. Additionally, RAPIDS emphasizes essential data preparation processes tailored for analytics and data science, featuring a familiar DataFrame API that seamlessly integrates with various machine learning algorithms to enhance pipeline efficiency without incurring the usual serialization overhead. Moreover, it supports multi-node and multi-GPU setups, enabling significantly faster processing and training on considerably larger datasets. By incorporating RAPIDS, you can enhance your Python data science workflows with minimal code modifications and without the need to learn any new tools. This approach not only streamlines the model iteration process but also facilitates more frequent deployments, ultimately leading to improved machine learning model accuracy. As a result, RAPIDS significantly transforms the landscape of data science, making it more efficient and accessible.
  • 6
    Fosfor Decision Cloud Reviews
    All the essential tools for improving your business decisions are at your fingertips. The Fosfor Decision Cloud integrates the contemporary data ecosystem, fulfilling the long-awaited potential of AI by driving superior business results. By consolidating the elements of your data architecture into an innovative decision stack, the Fosfor Decision Cloud is designed to elevate business performance. Fosfor collaborates effortlessly with its partners to establish a cutting-edge decision stack that unlocks exceptional value from your data investments, ensuring that you can make informed choices with confidence. This collaborative approach not only enhances decision-making but also fosters a culture of data-driven success.
  • Previous
  • You're on page 1
  • Next