Best Data Quality Software for Presto

Find and compare the best Data Quality software for Presto in 2024

Use the comparison tool below to compare the top Data Quality software for Presto on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    DQOps Reviews

    DQOps

    DQOps

    $499 per month
    DQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code.
  • 2
    Anomalo Reviews
    Anomalo helps you get ahead of data issues by automatically detecting them as soon as they appear and before anyone else is impacted. -Depth of Checks: Provides both foundational observability (automated checks for data freshness, volume, schema changes) and deep data quality monitoring (automated checks for data consistency and correctness). -Automation: Use unsupervised machine learning to automatically identify missing and anomalous data. -Easy for everyone, no-code UI: A user can generate a no-code check that calculates a metric, plots it over time, generates a time series model, sends intuitive alerts to tools like Slack, and returns a root cause analysis. -Intelligent Alerting: Incredibly powerful unsupervised machine learning intelligently readjusts time series models and uses automatic secondary checks to weed out false positives. -Time to Resolution: Automatically generates a root cause analysis that saves users time determining why an anomaly is occurring. Our triage feature orchestrates a resolution workflow and can integrate with many remediation steps, like ticketing systems. -In-VPC Development: Data never leaves the customer’s environment. Anomalo can be run entirely in-VPC for the utmost in privacy & security
  • 3
    Sifflet Reviews
    Automate the automatic coverage of thousands of tables using ML-based anomaly detection. 50+ custom metrics are also available. Monitoring of metadata and data. Comprehensive mapping of all dependencies between assets from ingestion to reporting. Collaboration between data consumers and data engineers is enhanced and productivity is increased. Sifflet integrates seamlessly with your data sources and preferred tools. It can run on AWS and Google Cloud Platform as well as Microsoft Azure. Keep an eye on your data's health and notify the team if quality criteria are not being met. In a matter of seconds, you can set up the basic coverage of all your tables. You can set the frequency, criticality, and even custom notifications. Use ML-based rules for any anomaly in your data. There is no need to create a new configuration. Each rule is unique because it learns from historical data as well as user feedback. A library of 50+ templates can be used to complement the automated rules.
  • Previous
  • You're on page 1
  • Next