Best Data Quality Software for dbt

Find and compare the best Data Quality software for dbt in 2025

Use the comparison tool below to compare the top Data Quality software for dbt on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    DQOps Reviews

    DQOps

    DQOps

    $499 per month
    DQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code.
  • 2
    Decube Reviews
    Decube is a comprehensive data management platform designed to help organizations manage their data observability, data catalog, and data governance needs. Our platform is designed to provide accurate, reliable, and timely data, enabling organizations to make better-informed decisions. Our data observability tools provide end-to-end visibility into data, making it easier for organizations to track data origin and flow across different systems and departments. With our real-time monitoring capabilities, organizations can detect data incidents quickly and reduce their impact on business operations. The data catalog component of our platform provides a centralized repository for all data assets, making it easier for organizations to manage and govern data usage and access. With our data classification tools, organizations can identify and manage sensitive data more effectively, ensuring compliance with data privacy regulations and policies. The data governance component of our platform provides robust access controls, enabling organizations to manage data access and usage effectively. Our tools also allow organizations to generate audit reports, track user activity, and demonstrate compliance with regulatory requirements.
  • 3
    Metaplane Reviews

    Metaplane

    Metaplane

    $825 per month
    In 30 minutes, you can monitor your entire warehouse. Automated warehouse-to-BI lineage can identify downstream impacts. Trust can be lost in seconds and regained in months. With modern data-era observability, you can have peace of mind. It can be difficult to get the coverage you need with code-based tests. They take hours to create and maintain. Metaplane allows you to add hundreds of tests in minutes. Foundational tests (e.g. We support foundational tests (e.g. row counts, freshness and schema drift), more complicated tests (distribution shifts, nullness shiftings, enum modifications), custom SQL, as well as everything in between. Manual thresholds can take a while to set and quickly become outdated as your data changes. Our anomaly detection algorithms use historical metadata to detect outliers. To minimize alert fatigue, monitor what is important, while also taking into account seasonality, trends and feedback from your team. You can also override manual thresholds.
  • 4
    DataOps.live Reviews
    Create a scalable architecture that treats data products as first-class citizens. Automate and repurpose data products. Enable compliance and robust data governance. Control the costs of your data products and pipelines for Snowflake. This global pharmaceutical giant's data product teams can benefit from next-generation analytics using self-service data and analytics infrastructure that includes Snowflake and other tools that use a data mesh approach. The DataOps.live platform allows them to organize and benefit from next generation analytics. DataOps is a unique way for development teams to work together around data in order to achieve rapid results and improve customer service. Data warehousing has never been paired with agility. DataOps is able to change all of this. Governance of data assets is crucial, but it can be a barrier to agility. Dataops enables agility and increases governance. DataOps does not refer to technology; it is a way of thinking.
  • 5
    Datafold Reviews
    Eliminate data outages by proactively identifying and resolving data quality problems before they enter production. Achieve full test coverage of your data pipelines in just one day, going from 0 to 100%. With automatic regression testing across billions of rows, understand the impact of each code modification. Streamline change management processes, enhance data literacy, ensure compliance, and minimize the time taken to respond to incidents. Stay ahead of potential data issues by utilizing automated anomaly detection, ensuring you're always informed. Datafold’s flexible machine learning model adjusts to seasonal variations and trends in your data, allowing for the creation of dynamic thresholds. Save significant time spent analyzing data by utilizing the Data Catalog, which simplifies the process of locating relevant datasets and fields while providing easy exploration of distributions through an intuitive user interface. Enjoy features like interactive full-text search, data profiling, and a centralized repository for metadata, all designed to enhance your data management experience. By leveraging these tools, you can transform your data processes and improve overall efficiency.
  • 6
    Sifflet Reviews
    Effortlessly monitor thousands of tables through machine learning-driven anomaly detection alongside a suite of over 50 tailored metrics. Ensure comprehensive oversight of both data and metadata while meticulously mapping all asset dependencies from ingestion to business intelligence. This solution enhances productivity and fosters collaboration between data engineers and consumers. Sifflet integrates smoothly with your existing data sources and tools, functioning on platforms like AWS, Google Cloud Platform, and Microsoft Azure. Maintain vigilance over your data's health and promptly notify your team when quality standards are not satisfied. With just a few clicks, you can establish essential coverage for all your tables. Additionally, you can customize the frequency of checks, their importance, and specific notifications simultaneously. Utilize machine learning-driven protocols to identify any data anomalies with no initial setup required. Every rule is supported by a unique model that adapts based on historical data and user input. You can also enhance automated processes by utilizing a library of over 50 templates applicable to any asset, thereby streamlining your monitoring efforts even further. This approach not only simplifies data management but also empowers teams to respond proactively to potential issues.
  • 7
    Validio Reviews
    Examine the usage of your data assets, focusing on aspects like popularity, utilization, and schema coverage. Gain vital insights into your data assets, including their quality and usage metrics. You can easily locate and filter the necessary data by leveraging metadata tags and descriptions. Additionally, these insights will help you drive data governance and establish clear ownership within your organization. By implementing a streamlined lineage from data lakes to warehouses, you can enhance collaboration and accountability. An automatically generated field-level lineage map provides a comprehensive view of your entire data ecosystem. Moreover, anomaly detection systems adapt by learning from your data trends and seasonal variations, ensuring automatic backfilling with historical data. Thresholds driven by machine learning are specifically tailored for each data segment, relying on actual data rather than just metadata to ensure accuracy and relevance. This holistic approach empowers organizations to better manage their data landscape effectively.
  • Previous
  • You're on page 1
  • Next