Best Data Quality Software for Apache Kafka

Find and compare the best Data Quality software for Apache Kafka in 2025

Use the comparison tool below to compare the top Data Quality software for Apache Kafka on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    OpenDQ Reviews

    OpenDQ

    Infosolve Technologies, Inc

    $0
    1 Rating
    OpenDQ is a zero-cost enterprise data quality, master and governance solution. OpenDQ is modularly built and can scale to meet your enterprise data management requirements. OpenDQ provides trusted data using a machine learning- and artificial intelligence-based framework. Comprehensive Data Quality Matching Profiling Data/Address Standardization Master Data Management 360 View of Customer Data Governance Business Glossary Meta Data Management
  • 2
    SCIKIQ Reviews

    SCIKIQ

    DAAS Labs

    $10,000 per year
    A platform for data management powered by AI that allows data democratization. Insights drives innovation by integrating and centralizing all data sources, facilitating collaboration, and empowering organizations for innovation. SCIKIQ, a holistic business platform, simplifies the data complexities of business users through a drag-and-drop user interface. This allows businesses to concentrate on driving value out of data, allowing them to grow and make better decisions. You can connect any data source and use box integration to ingest both structured and unstructured data. Built for business users, easy to use, no-code platform, drag and drop data management. Self-learning platform. Cloud agnostic, environment agnostic. You can build on top of any data environment. The SCIKIQ architecture was specifically designed to address the complex hybrid data landscape.
  • 3
    BigID Reviews
    Data visibility and control for security, compliance, privacy, and governance. BigID's platform includes a foundational data discovery platform combining data classification and cataloging for finding personal, sensitive and high value data - plus a modular array of add on apps for solving discrete problems in privacy, security and governance. Automate scans, discovery, classification, workflows, and more on the data you need - and find all PI, PII, sensitive, and critical data across unstructured and structured data, on-prem and in the cloud. BigID uses advanced machine learning and data intelligence to help enterprises better manage and protect their customer & sensitive data, meet data privacy and protection regulations, and leverage unmatched coverage for all data across all data stores.
  • 4
    Ataccama ONE Reviews
    Ataccama is a revolutionary way to manage data and create enterprise value. Ataccama unifies Data Governance, Data Quality and Master Data Management into one AI-powered fabric that can be used in hybrid and cloud environments. This gives your business and data teams unprecedented speed and security while ensuring trust, security and governance of your data.
  • 5
    Mozart Data Reviews
    Mozart Data is the all-in-one modern data platform for consolidating, organizing, and analyzing your data. Set up a modern data stack in an hour, without any engineering. Start getting more out of your data and making data-driven decisions today.
  • 6
    Telmai Reviews
    A low-code, no-code strategy enhances data quality management. This software-as-a-service (SaaS) model offers flexibility, cost-effectiveness, seamless integration, and robust support options. It maintains rigorous standards for encryption, identity management, role-based access control, data governance, and compliance. Utilizing advanced machine learning algorithms, it identifies anomalies in row-value data, with the capability to evolve alongside the unique requirements of users' businesses and datasets. Users can incorporate numerous data sources, records, and attributes effortlessly, making the platform resilient to unexpected increases in data volume. It accommodates both batch and streaming processing, ensuring that data is consistently monitored to provide real-time alerts without affecting pipeline performance. The platform offers a smooth onboarding, integration, and investigation process, making it accessible to data teams aiming to proactively spot and analyze anomalies as they arise. With a no-code onboarding process, users can simply connect to their data sources and set their alerting preferences. Telmai intelligently adapts to data patterns, notifying users of any significant changes, ensuring that they remain informed and prepared for any data fluctuations.
  • 7
    Foundational Reviews
    Detect and address code and optimization challenges in real-time, mitigate data incidents before deployment, and oversee data-affecting code modifications comprehensively—from the operational database to the user interface dashboard. With automated, column-level data lineage tracing the journey from the operational database to the reporting layer, every dependency is meticulously examined. Foundational automates the enforcement of data contracts by scrutinizing each repository in both upstream and downstream directions, directly from the source code. Leverage Foundational to proactively uncover code and data-related issues, prevent potential problems, and establish necessary controls and guardrails. Moreover, implementing Foundational can be achieved in mere minutes without necessitating any alterations to the existing codebase, making it an efficient solution for organizations. This streamlined setup promotes quicker response times to data governance challenges.
  • 8
    Acceldata Reviews
    Acceldata stands out as the sole Data Observability platform that offers total oversight of enterprise data systems, delivering extensive visibility into intricate and interconnected data architectures. It integrates signals from various workloads, as well as data quality, infrastructure, and security aspects, thereby enhancing both data processing and operational efficiency. With its automated end-to-end data quality monitoring, it effectively manages the challenges posed by rapidly changing datasets. Acceldata also provides a unified view to anticipate, detect, and resolve data-related issues in real-time. Users can monitor the flow of business data seamlessly and reveal anomalies within interconnected data pipelines, ensuring a more reliable data ecosystem. This holistic approach not only streamlines data management but also empowers organizations to make informed decisions based on accurate insights.
  • 9
    Secuvy AI Reviews
    Secuvy, a next-generation cloud platform, automates data security, privacy compliance, and governance via AI-driven workflows. Unstructured data is treated with the best data intelligence. Secuvy, a next-generation cloud platform that automates data security, privacy compliance, and governance via AI-driven workflows is called Secuvy. Unstructured data is treated with the best data intelligence. Automated data discovery, customizable subjects access requests, user validations and data maps & workflows to comply with privacy regulations such as the ccpa or gdpr. Data intelligence is used to locate sensitive and private information in multiple data stores, both in motion and at rest. Our mission is to assist organizations in protecting their brand, automating processes, and improving customer trust in a world that is rapidly changing. We want to reduce human effort, costs and errors in handling sensitive data.
  • 10
    rudol Reviews
    You can unify your data catalog, reduce communication overhead, and enable quality control for any employee of your company without having to deploy or install anything. Rudol is a data platform that helps companies understand all data sources, regardless of where they are from. It reduces communication in reporting processes and urgencies and allows data quality diagnosis and issue prevention for all company members. Each organization can add data sources from rudol's growing list of providers and BI tools that have a standardized structure. This includes MySQL, PostgreSQL. Redshift. Snowflake. Kafka. S3*. BigQuery*. MongoDB*. Tableau*. PowerBI*. Looker* (*in development). No matter where the data comes from, anyone can easily understand where it is stored, read its documentation, and contact data owners via our integrations.
  • 11
    APERIO DataWise Reviews
    Data plays a crucial role in every facet of a processing plant or facility, serving as the backbone for most operational workflows, critical business decisions, and various environmental occurrences. Often, failures can be linked back to this very data, manifesting as operator mistakes, faulty sensors, safety incidents, or inadequate analytics. APERIO steps in to address these challenges effectively. In the realm of Industry 4.0, data integrity stands as a vital component, forming the bedrock for more sophisticated applications, including predictive models, process optimization, and tailored AI solutions. Recognized as the premier provider of dependable and trustworthy data, APERIO DataWise enables organizations to automate the quality assurance of their PI data or digital twins on a continuous and large scale. By guaranteeing validated data throughout the enterprise, businesses can enhance asset reliability significantly. Furthermore, this empowers operators to make informed decisions, fortifies the detection of threats to operational data, and ensures resilience in operations. Additionally, APERIO facilitates precise monitoring and reporting of sustainability metrics, promoting greater accountability and transparency within industrial practices.
  • 12
    Validio Reviews
    Examine the usage of your data assets, focusing on aspects like popularity, utilization, and schema coverage. Gain vital insights into your data assets, including their quality and usage metrics. You can easily locate and filter the necessary data by leveraging metadata tags and descriptions. Additionally, these insights will help you drive data governance and establish clear ownership within your organization. By implementing a streamlined lineage from data lakes to warehouses, you can enhance collaboration and accountability. An automatically generated field-level lineage map provides a comprehensive view of your entire data ecosystem. Moreover, anomaly detection systems adapt by learning from your data trends and seasonal variations, ensuring automatic backfilling with historical data. Thresholds driven by machine learning are specifically tailored for each data segment, relying on actual data rather than just metadata to ensure accuracy and relevance. This holistic approach empowers organizations to better manage their data landscape effectively.
  • Previous
  • You're on page 1
  • Next