Best Data Pipeline Software for Databricks Data Intelligence Platform

Find and compare the best Data Pipeline software for Databricks Data Intelligence Platform in 2025

Use the comparison tool below to compare the top Data Pipeline software for Databricks Data Intelligence Platform on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    DataBuck Reviews
    See Software
    Learn More
    Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
  • 2
    Hevo Reviews

    Hevo

    Hevo Data

    $249/month
    3 Ratings
    Hevo Data is a no-code, bi-directional data pipeline platform specially built for modern ETL, ELT, and Reverse ETL Needs. It helps data teams streamline and automate org-wide data flows that result in a saving of ~10 hours of engineering time/week and 10x faster reporting, analytics, and decision making. The platform supports 100+ ready-to-use integrations across Databases, SaaS Applications, Cloud Storage, SDKs, and Streaming Services. Over 500 data-driven companies spread across 35+ countries trust Hevo for their data integration needs.
  • 3
    Gathr.ai Reviews
    Top Pick
    Gathr is a Data+AI fabric, helping enterprises rapidly deliver production-ready data and AI products. Data+AI fabric enables teams to effortlessly acquire, process, and harness data, leverage AI services to generate intelligence, and build consumer applications— all with unparalleled speed, scale, and confidence. Gathr’s self-service, AI-assisted, and collaborative approach enables data and AI leaders to achieve massive productivity gains by empowering their existing teams to deliver more valuable work in less time. With complete ownership and control over data and AI, flexibility and agility to experiment and innovate on an ongoing basis, and proven reliable performance at real-world scale, Gathr allows them to confidently accelerate POVs to production. Additionally, Gathr supports both cloud and air-gapped deployments, making it the ideal choice for diverse enterprise needs. Gathr, recognized by leading analysts like Gartner and Forrester, is a go-to-partner for Fortune 500 companies, such as United, Kroger, Philips, Truist, and many others.
  • 4
    Apache Kafka Reviews

    Apache Kafka

    The Apache Software Foundation

    1 Rating
    Apache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures.
  • 5
    Rivery Reviews

    Rivery

    Rivery

    $0.75 Per Credit
    Rivery’s ETL platform consolidates, transforms, and manages all of a company’s internal and external data sources in the cloud. Key Features: Pre-built Data Models: Rivery comes with an extensive library of pre-built data models that enable data teams to instantly create powerful data pipelines. Fully managed: A no-code, auto-scalable, and hassle-free platform. Rivery takes care of the back end, allowing teams to spend time on mission-critical priorities rather than maintenance. Multiple Environments: Rivery enables teams to construct and clone custom environments for specific teams or projects. Reverse ETL: Allows companies to automatically send data from cloud warehouses to business applications, marketing clouds, CPD’s, and more.
  • 6
    Dagster Reviews

    Dagster

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 7
    dbt Reviews

    dbt

    dbt Labs

    $50 per user per month
    Version control, quality assurance, documentation, and modularity enable data teams to work together similarly to software engineering teams. It is crucial to address analytics errors with the same urgency as one would for bugs in a live product. A significant portion of the analytic workflow is still performed manually. Therefore, we advocate for workflows to be designed for execution with a single command. Data teams leverage dbt to encapsulate business logic, making it readily available across the organization for various purposes including reporting, machine learning modeling, and operational tasks. The integration of continuous integration and continuous deployment (CI/CD) ensures that modifications to data models progress smoothly through the development, staging, and production phases. Additionally, dbt Cloud guarantees uptime and offers tailored service level agreements (SLAs) to meet organizational needs. This comprehensive approach fosters a culture of reliability and efficiency within data operations.
  • 8
    Arcion Reviews

    Arcion

    Arcion Labs

    $2,894.76 per month
    Implement production-ready change data capture (CDC) systems for high-volume, real-time data replication effortlessly, without writing any code. Experience an enhanced Change Data Capture process with Arcion, which provides automatic schema conversion, comprehensive data replication, and various deployment options. Benefit from Arcion's zero data loss architecture that ensures reliable end-to-end data consistency alongside integrated checkpointing, all without requiring any custom coding. Overcome scalability and performance challenges with a robust, distributed architecture that enables data replication at speeds ten times faster. Minimize DevOps workload through Arcion Cloud, the only fully-managed CDC solution available, featuring autoscaling, high availability, and an intuitive monitoring console. Streamline and standardize your data pipeline architecture while facilitating seamless, zero-downtime migration of workloads from on-premises systems to the cloud. This innovative approach not only enhances efficiency but also significantly reduces the complexity of managing data replication processes.
  • 9
    Decube Reviews
    Decube is a comprehensive data management platform designed to help organizations manage their data observability, data catalog, and data governance needs. Our platform is designed to provide accurate, reliable, and timely data, enabling organizations to make better-informed decisions. Our data observability tools provide end-to-end visibility into data, making it easier for organizations to track data origin and flow across different systems and departments. With our real-time monitoring capabilities, organizations can detect data incidents quickly and reduce their impact on business operations. The data catalog component of our platform provides a centralized repository for all data assets, making it easier for organizations to manage and govern data usage and access. With our data classification tools, organizations can identify and manage sensitive data more effectively, ensuring compliance with data privacy regulations and policies. The data governance component of our platform provides robust access controls, enabling organizations to manage data access and usage effectively. Our tools also allow organizations to generate audit reports, track user activity, and demonstrate compliance with regulatory requirements.
  • 10
    Streamkap Reviews

    Streamkap

    Streamkap

    $600 per month
    Streamkap is a modern streaming ETL platform built on top of Apache Kafka and Flink, designed to replace batch ETL with streaming in minutes. It enables data movement with sub-second latency using change data capture for minimal impact on source databases and real-time updates. The platform offers dozens of pre-built, no-code source connectors, automated schema drift handling, updates, data normalization, and high-performance CDC for efficient and low-impact data movement. Streaming transformations power faster, cheaper, and richer data pipelines, supporting Python and SQL transformations for common use cases like hashing, masking, aggregations, joins, and unnesting JSON. Streamkap allows users to connect data sources and move data to target destinations with an automated, reliable, and scalable data movement platform. It supports a broad range of event and database sources.
  • 11
    Fivetran Reviews
    Fivetran is a comprehensive data integration solution designed to centralize and streamline data movement for organizations of all sizes. With more than 700 pre-built connectors, it effortlessly transfers data from SaaS apps, databases, ERPs, and files into data warehouses and lakes, enabling real-time analytics and AI-driven insights. The platform’s scalable pipelines automatically adapt to growing data volumes and business complexity. Leading companies such as Dropbox, JetBlue, Pfizer, and National Australia Bank rely on Fivetran to reduce data ingestion time from weeks to minutes and improve operational efficiency. Fivetran offers strong security compliance with certifications including SOC 1 & 2, GDPR, HIPAA, ISO 27001, PCI DSS, and HITRUST. Users can programmatically create and manage pipelines through its REST API for seamless extensibility. The platform supports governance features like role-based access controls and integrates with transformation tools like dbt Labs. Fivetran helps organizations innovate by providing reliable, secure, and automated data pipelines tailored to their evolving needs.
  • 12
    Lyftrondata Reviews
    If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy.
  • 13
    Datavolo Reviews

    Datavolo

    Datavolo

    $36,000 per year
    Gather all your unstructured data to meet your LLM requirements effectively. Datavolo transforms single-use, point-to-point coding into rapid, adaptable, reusable pipelines, allowing you to concentrate on what truly matters—producing exceptional results. As a dataflow infrastructure, Datavolo provides you with a significant competitive advantage. Enjoy swift, unrestricted access to all your data, including the unstructured files essential for LLMs, thereby enhancing your generative AI capabilities. Experience pipelines that expand alongside you, set up in minutes instead of days, without the need for custom coding. You can easily configure sources and destinations at any time, while trust in your data is ensured, as lineage is incorporated into each pipeline. Move beyond single-use pipelines and costly configurations. Leverage your unstructured data to drive AI innovation with Datavolo, which is supported by Apache NiFi and specifically designed for handling unstructured data. With a lifetime of experience, our founders are dedicated to helping organizations maximize their data's potential. This commitment not only empowers businesses but also fosters a culture of data-driven decision-making.
  • 14
    Orchestra Reviews
    Orchestra serves as a Comprehensive Control Platform for Data and AI Operations, aimed at empowering data teams to effortlessly create, deploy, and oversee workflows. This platform provides a declarative approach that merges coding with a graphical interface, enabling users to develop workflows at a tenfold speed while cutting maintenance efforts by half. Through its real-time metadata aggregation capabilities, Orchestra ensures complete data observability, facilitating proactive alerts and swift recovery from any pipeline issues. It smoothly integrates with a variety of tools such as dbt Core, dbt Cloud, Coalesce, Airbyte, Fivetran, Snowflake, BigQuery, Databricks, and others, ensuring it fits well within existing data infrastructures. With a modular design that accommodates AWS, Azure, and GCP, Orchestra proves to be a flexible option for businesses and growing organizations looking to optimize their data processes and foster confidence in their AI ventures. Additionally, its user-friendly interface and robust connectivity options make it an essential asset for organizations striving to harness the full potential of their data ecosystems.
  • 15
    Astro by Astronomer Reviews
    Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration.
  • 16
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • 17
    Pantomath Reviews
    Organizations are increasingly focused on becoming more data-driven, implementing dashboards, analytics, and data pipelines throughout the contemporary data landscape. However, many organizations face significant challenges with data reliability, which can lead to misguided business decisions and a general mistrust in data that negatively affects their financial performance. Addressing intricate data challenges is often a labor-intensive process that requires collaboration among various teams, all of whom depend on informal knowledge to painstakingly reverse engineer complex data pipelines spanning multiple platforms in order to pinpoint root causes and assess their implications. Pantomath offers a solution as a data pipeline observability and traceability platform designed to streamline data operations. By continuously monitoring datasets and jobs within the enterprise data ecosystem, it provides essential context for complex data pipelines by generating automated cross-platform technical pipeline lineage. This automation not only enhances efficiency but also fosters greater confidence in data-driven decision-making across the organization.
  • 18
    Tarsal Reviews
    Tarsal's capability for infinite scalability ensures that as your organization expands, it seamlessly adapts to your needs. With Tarsal, you can effortlessly change the destination of your data; what serves as SIEM data today can transform into data lake information tomorrow, all accomplished with a single click. You can maintain your SIEM while gradually shifting analytics to a data lake without the need for any extensive overhaul. Some analytics may not be compatible with your current SIEM, but Tarsal empowers you to have data ready for queries in a data lake environment. Since your SIEM represents a significant portion of your expenses, utilizing Tarsal to transfer some of that data to your data lake can be a cost-effective strategy. Tarsal stands out as the first highly scalable ETL data pipeline specifically designed for security teams, allowing you to easily exfiltrate vast amounts of data in just a few clicks. With its instant normalization feature, Tarsal enables you to route data efficiently to any destination of your choice, making data management simpler and more effective than ever. This flexibility allows organizations to maximize their resources while enhancing their data handling capabilities.
  • 19
    Observo AI Reviews
    Observo AI is an innovative platform tailored for managing large-scale telemetry data within security and DevOps environments. Utilizing advanced machine learning techniques and agentic AI, it automates the optimization of data, allowing companies to handle AI-generated information in a manner that is not only more efficient but also secure and budget-friendly. The platform claims to cut data processing expenses by over 50%, while improving incident response speeds by upwards of 40%. Among its capabilities are smart data deduplication and compression, real-time anomaly detection, and the intelligent routing of data to suitable storage or analytical tools. Additionally, it enhances data streams with contextual insights, which boosts the accuracy of threat detection and helps reduce the occurrence of false positives. Observo AI also features a cloud-based searchable data lake that streamlines data storage and retrieval, making it easier for organizations to access critical information when needed. This comprehensive approach ensures that enterprises can keep pace with the evolving landscape of cybersecurity threats.
  • 20
    DataBahn Reviews
    DataBahn is an advanced platform that harnesses the power of AI to manage data pipelines and enhance security, streamlining the processes of data collection, integration, and optimization from a variety of sources to various destinations. Boasting a robust array of over 400 connectors, it simplifies the onboarding process and boosts the efficiency of data flow significantly. The platform automates data collection and ingestion, allowing for smooth integration, even when dealing with disparate security tools. Moreover, it optimizes costs related to SIEM and data storage through intelligent, rule-based filtering, which directs less critical data to more affordable storage options. It also ensures real-time visibility and insights by utilizing telemetry health alerts and implementing failover handling, which guarantees the integrity and completeness of data collection. Comprehensive data governance is further supported by AI-driven tagging, automated quarantining of sensitive information, and mechanisms in place to prevent vendor lock-in. In addition, DataBahn's adaptability allows organizations to stay agile and responsive to evolving data management needs.
  • 21
    Unravel Reviews
    Unravel empowers data functionality across various environments, whether it’s Azure, AWS, GCP, or your own data center, by enhancing performance, automating issue resolution, and managing expenses effectively. It enables users to oversee, control, and optimize their data pipelines both in the cloud and on-site, facilitating a more consistent performance in the applications that drive business success. With Unravel, you gain a holistic perspective of your complete data ecosystem. The platform aggregates performance metrics from all systems, applications, and platforms across any cloud, employing agentless solutions and machine learning to thoroughly model your data flows from start to finish. This allows for an in-depth exploration, correlation, and analysis of every component within your contemporary data and cloud infrastructure. Unravel's intelligent data model uncovers interdependencies, identifies challenges, and highlights potential improvements, providing insight into how applications and resources are utilized, as well as distinguishing between effective and ineffective elements. Instead of merely tracking performance, you can swiftly identify problems and implement solutions. Utilize AI-enhanced suggestions to automate enhancements, reduce expenses, and strategically prepare for future needs. Ultimately, Unravel not only optimizes your data management strategies but also supports a proactive approach to data-driven decision-making.
  • 22
    BettrData Reviews
    Our innovative automated data operations platform empowers businesses to decrease or reassign the full-time staff required for their data management tasks. Traditionally, this has been a labor-intensive and costly endeavor, but our solution consolidates everything into a user-friendly package that streamlines the process and leads to substantial cost savings. Many organizations struggle to maintain data quality due to the overwhelming volume of problematic data they handle daily. By implementing our platform, companies transition into proactive entities regarding data integrity. With comprehensive visibility over incoming data and an integrated alert system, our platform guarantees adherence to your data quality standards. As a groundbreaking solution, we have transformed numerous expensive manual workflows into a cohesive platform. The BettrData.io platform is not only easy to implement but also requires just a few simple configurations to get started. This means that businesses can swiftly adapt to our system, ensuring they maximize efficiency from day one.
  • Previous
  • You're on page 1
  • Next