Best Data Pipeline Software for Apache Spark

Find and compare the best Data Pipeline software for Apache Spark in 2025

Use the comparison tool below to compare the top Data Pipeline software for Apache Spark on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Dagster+ Reviews

    Dagster+

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 2
    Yandex Data Proc Reviews

    Yandex Data Proc

    Yandex

    $0.19 per hour
    You determine the cluster size, node specifications, and a range of services, while Yandex Data Proc effortlessly sets up and configures Spark, Hadoop clusters, and additional components. Collaboration is enhanced through the use of Zeppelin notebooks and various web applications via a user interface proxy. You maintain complete control over your cluster with root access for every virtual machine. Moreover, you can install your own software and libraries on active clusters without needing to restart them. Yandex Data Proc employs instance groups to automatically adjust computing resources of compute subclusters in response to CPU usage metrics. Additionally, Data Proc facilitates the creation of managed Hive clusters, which helps minimize the risk of failures and data loss due to metadata issues. This service streamlines the process of constructing ETL pipelines and developing models, as well as managing other iterative operations. Furthermore, the Data Proc operator is natively integrated into Apache Airflow, allowing for seamless orchestration of data workflows. This means that users can leverage the full potential of their data processing capabilities with minimal overhead and maximum efficiency.
  • 3
    Lyftrondata Reviews
    If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy.
  • 4
    Astro Reviews
    Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration.
  • 5
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 6
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • 7
    definity Reviews
    Manage and oversee all operations of your data pipelines without requiring any code modifications. Keep an eye on data flows and pipeline activities to proactively avert outages and swiftly diagnose problems. Enhance the efficiency of pipeline executions and job functionalities to cut expenses while adhering to service level agreements. Expedite code rollouts and platform enhancements while ensuring both reliability and performance remain intact. Conduct data and performance evaluations concurrently with pipeline operations, including pre-execution checks on input data. Implement automatic preemptions of pipeline executions when necessary. The definity solution alleviates the workload of establishing comprehensive end-to-end coverage, ensuring protection throughout every phase and aspect. By transitioning observability to the post-production stage, definity enhances ubiquity, broadens coverage, and minimizes manual intervention. Each definity agent operates seamlessly with every pipeline, leaving no trace behind. Gain a comprehensive perspective on data, pipelines, infrastructure, lineage, and code for all data assets, allowing for real-time detection and the avoidance of asynchronous verifications. Additionally, it can autonomously preempt executions based on input evaluations, providing an extra layer of oversight.
  • 8
    Unravel Reviews
    Unravel empowers data functionality across various environments, whether it’s Azure, AWS, GCP, or your own data center, by enhancing performance, automating issue resolution, and managing expenses effectively. It enables users to oversee, control, and optimize their data pipelines both in the cloud and on-site, facilitating a more consistent performance in the applications that drive business success. With Unravel, you gain a holistic perspective of your complete data ecosystem. The platform aggregates performance metrics from all systems, applications, and platforms across any cloud, employing agentless solutions and machine learning to thoroughly model your data flows from start to finish. This allows for an in-depth exploration, correlation, and analysis of every component within your contemporary data and cloud infrastructure. Unravel's intelligent data model uncovers interdependencies, identifies challenges, and highlights potential improvements, providing insight into how applications and resources are utilized, as well as distinguishing between effective and ineffective elements. Instead of merely tracking performance, you can swiftly identify problems and implement solutions. Utilize AI-enhanced suggestions to automate enhancements, reduce expenses, and strategically prepare for future needs. Ultimately, Unravel not only optimizes your data management strategies but also supports a proactive approach to data-driven decision-making.
  • Previous
  • You're on page 1
  • Next