Best Data Pipeline Software for Amazon Web Services (AWS)

Find and compare the best Data Pipeline software for Amazon Web Services (AWS) in 2025

Use the comparison tool below to compare the top Data Pipeline software for Amazon Web Services (AWS) on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    DataBahn Reviews
    See Software
    Learn More
    DataBahn is an advanced platform that harnesses the power of AI to manage data pipelines and enhance security, streamlining the processes of data collection, integration, and optimization from a variety of sources to various destinations. Boasting a robust array of over 400 connectors, it simplifies the onboarding process and boosts the efficiency of data flow significantly. The platform automates data collection and ingestion, allowing for smooth integration, even when dealing with disparate security tools. Moreover, it optimizes costs related to SIEM and data storage through intelligent, rule-based filtering, which directs less critical data to more affordable storage options. It also ensures real-time visibility and insights by utilizing telemetry health alerts and implementing failover handling, which guarantees the integrity and completeness of data collection. Comprehensive data governance is further supported by AI-driven tagging, automated quarantining of sensitive information, and mechanisms in place to prevent vendor lock-in. In addition, DataBahn's adaptability allows organizations to stay agile and responsive to evolving data management needs.
  • 2
    DataBuck Reviews
    See Software
    Learn More
    Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
  • 3
    Stitch Reviews
    Stitch is a cloud-based platform that allows you to extract, transform, load data. Stitch is used by more than 1000 companies to move billions records daily from SaaS databases and applications into data warehouses or data lakes.
  • 4
    Dagster Reviews

    Dagster

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 5
    StreamNative Reviews

    StreamNative

    StreamNative

    $1,000 per month
    StreamNative transforms the landscape of streaming infrastructure by combining Kafka, MQ, and various other protocols into one cohesive platform, which offers unmatched flexibility and efficiency tailored for contemporary data processing requirements. This integrated solution caters to the varied demands of streaming and messaging within microservices architectures. By delivering a holistic and intelligent approach to both messaging and streaming, StreamNative equips organizations with the tools to effectively manage the challenges and scalability of today’s complex data environment. Furthermore, Apache Pulsar’s distinctive architecture separates the message serving component from the message storage segment, creating a robust cloud-native data-streaming platform. This architecture is designed to be both scalable and elastic, allowing for quick adjustments to fluctuating event traffic and evolving business needs, and it can scale up to accommodate millions of topics, ensuring that computation and storage remain decoupled for optimal performance. Ultimately, this innovative design positions StreamNative as a leader in addressing the multifaceted requirements of modern data streaming.
  • 6
    DoubleCloud Reviews

    DoubleCloud

    DoubleCloud

    $0.024 per 1 GB per month
    Optimize your time and reduce expenses by simplifying data pipelines using hassle-free open source solutions. Covering everything from data ingestion to visualization, all components are seamlessly integrated, fully managed, and exceptionally reliable, ensuring your engineering team enjoys working with data. You can opt for any of DoubleCloud’s managed open source services or take advantage of the entire platform's capabilities, which include data storage, orchestration, ELT, and instantaneous visualization. We offer premier open source services such as ClickHouse, Kafka, and Airflow, deployable on platforms like Amazon Web Services or Google Cloud. Our no-code ELT tool enables real-time data synchronization between various systems, providing a fast, serverless solution that integrates effortlessly with your existing setup. With our managed open-source data visualization tools, you can easily create real-time visual representations of your data through interactive charts and dashboards. Ultimately, our platform is crafted to enhance the daily operations of engineers, making their tasks more efficient and enjoyable. This focus on convenience is what sets us apart in the industry.
  • 7
    Amazon MWAA Reviews

    Amazon MWAA

    Amazon

    $0.49 per hour
    Amazon Managed Workflows for Apache Airflow (MWAA) is a service that simplifies the orchestration of Apache Airflow, allowing users to efficiently establish and manage comprehensive data pipelines in the cloud at scale. Apache Airflow itself is an open-source platform designed for the programmatic creation, scheduling, and oversight of workflows, which are sequences of various processes and tasks. By utilizing Managed Workflows, users can leverage Airflow and Python to design workflows while eliminating the need to handle the complexities of the underlying infrastructure, ensuring scalability, availability, and security. This service adapts its workflow execution capabilities automatically to align with user demands and incorporates AWS security features, facilitating swift and secure data access. Overall, MWAA empowers organizations to focus on their data processes without the burden of infrastructure management.
  • 8
    Nextflow Reviews

    Nextflow

    Seqera Labs

    Free
    Data-driven computational pipelines. Nextflow allows for reproducible and scalable scientific workflows by using software containers. It allows adaptation of scripts written in most common scripting languages. Fluent DSL makes it easy to implement and deploy complex reactive and parallel workflows on clusters and clouds. Nextflow was built on the belief that Linux is the lingua Franca of data science. Nextflow makes it easier to create a computational pipeline that can be used to combine many tasks. You can reuse existing scripts and tools. Additionally, you don't have to learn a new language to use Nextflow. Nextflow supports Docker, Singularity and other containers technology. This, together with integration of the GitHub Code-sharing Platform, allows you write self-contained pipes, manage versions, reproduce any configuration quickly, and allow you to integrate the GitHub code-sharing portal. Nextflow acts as an abstraction layer between the logic of your pipeline and its execution layer.
  • 9
    DataOps.live Reviews
    Create a scalable architecture that treats data products as first-class citizens. Automate and repurpose data products. Enable compliance and robust data governance. Control the costs of your data products and pipelines for Snowflake. This global pharmaceutical giant's data product teams can benefit from next-generation analytics using self-service data and analytics infrastructure that includes Snowflake and other tools that use a data mesh approach. The DataOps.live platform allows them to organize and benefit from next generation analytics. DataOps is a unique way for development teams to work together around data in order to achieve rapid results and improve customer service. Data warehousing has never been paired with agility. DataOps is able to change all of this. Governance of data assets is crucial, but it can be a barrier to agility. Dataops enables agility and increases governance. DataOps does not refer to technology; it is a way of thinking.
  • 10
    Chalk Reviews
    Experience robust data engineering processes free from the challenges of infrastructure management. By utilizing straightforward, modular Python, you can define intricate streaming, scheduling, and data backfill pipelines with ease. Transition from traditional ETL methods and access your data instantly, regardless of its complexity. Seamlessly blend deep learning and large language models with structured business datasets to enhance decision-making. Improve forecasting accuracy using up-to-date information, eliminate the costs associated with vendor data pre-fetching, and conduct timely queries for online predictions. Test your ideas in Jupyter notebooks before moving them to a live environment. Avoid discrepancies between training and serving data while developing new workflows in mere milliseconds. Monitor all of your data operations in real-time to effortlessly track usage and maintain data integrity. Have full visibility into everything you've processed and the ability to replay data as needed. Easily integrate with existing tools and deploy on your infrastructure, while setting and enforcing withdrawal limits with tailored hold periods. With such capabilities, you can not only enhance productivity but also ensure streamlined operations across your data ecosystem.
  • 11
    Orchestra Reviews
    Orchestra serves as a Comprehensive Control Platform for Data and AI Operations, aimed at empowering data teams to effortlessly create, deploy, and oversee workflows. This platform provides a declarative approach that merges coding with a graphical interface, enabling users to develop workflows at a tenfold speed while cutting maintenance efforts by half. Through its real-time metadata aggregation capabilities, Orchestra ensures complete data observability, facilitating proactive alerts and swift recovery from any pipeline issues. It smoothly integrates with a variety of tools such as dbt Core, dbt Cloud, Coalesce, Airbyte, Fivetran, Snowflake, BigQuery, Databricks, and others, ensuring it fits well within existing data infrastructures. With a modular design that accommodates AWS, Azure, and GCP, Orchestra proves to be a flexible option for businesses and growing organizations looking to optimize their data processes and foster confidence in their AI ventures. Additionally, its user-friendly interface and robust connectivity options make it an essential asset for organizations striving to harness the full potential of their data ecosystems.
  • 12
    Data Virtuality Reviews
    Connect and centralize data. Transform your data landscape into a flexible powerhouse. Data Virtuality is a data integration platform that allows for instant data access, data centralization, and data governance. Logical Data Warehouse combines materialization and virtualization to provide the best performance. For high data quality, governance, and speed-to-market, create your single source data truth by adding a virtual layer to your existing data environment. Hosted on-premises or in the cloud. Data Virtuality offers three modules: Pipes Professional, Pipes Professional, or Logical Data Warehouse. You can cut down on development time up to 80% Access any data in seconds and automate data workflows with SQL. Rapid BI Prototyping allows for a significantly faster time to market. Data quality is essential for consistent, accurate, and complete data. Metadata repositories can be used to improve master data management.
  • 13
    Astro Reviews
    Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration.
  • 14
    Actifio Reviews
    Streamline the self-service provisioning and refreshing of enterprise workloads while seamlessly integrating with your current toolchain. Enable efficient data delivery and reutilization for data scientists via a comprehensive suite of APIs and automation tools. Achieve data recovery across any cloud environment from any moment in time, concurrently and at scale, surpassing traditional legacy solutions. Reduce the impact of ransomware and cyber threats by ensuring rapid recovery through immutable backup systems. A consolidated platform enhances the protection, security, retention, governance, and recovery of your data, whether on-premises or in the cloud. Actifio’s innovative software platform transforms isolated data silos into interconnected data pipelines. The Virtual Data Pipeline (VDP) provides comprehensive data management capabilities — adaptable for on-premises, hybrid, or multi-cloud setups, featuring extensive application integration, SLA-driven orchestration, flexible data movement, and robust data immutability and security measures. This holistic approach not only optimizes data handling but also empowers organizations to leverage their data assets more effectively.
  • 15
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 16
    BDB Platform Reviews
    BDB is an advanced platform for data analytics and business intelligence that excels in extracting valuable insights from your data. It can be implemented both in cloud environments and on-premises. With a unique microservices architecture, it incorporates components for Data Preparation, Predictive Analytics, Pipelines, and Dashboard design, enabling tailored solutions and scalable analytics across various sectors. Thanks to its robust NLP-driven search functionality, users can harness the potential of data seamlessly across desktops, tablets, and mobile devices. BDB offers numerous integrated data connectors, allowing it to interface with a wide array of popular data sources, applications, third-party APIs, IoT devices, and social media platforms in real-time. It facilitates connections to relational databases, big data systems, FTP/SFTP servers, flat files, and web services, effectively managing structured, semi-structured, and unstructured data. Embark on your path to cutting-edge analytics today, and discover the transformative power of BDB for your organization.
  • 17
    Observo AI Reviews
    Observo AI is an innovative platform tailored for managing large-scale telemetry data within security and DevOps environments. Utilizing advanced machine learning techniques and agentic AI, it automates the optimization of data, allowing companies to handle AI-generated information in a manner that is not only more efficient but also secure and budget-friendly. The platform claims to cut data processing expenses by over 50%, while improving incident response speeds by upwards of 40%. Among its capabilities are smart data deduplication and compression, real-time anomaly detection, and the intelligent routing of data to suitable storage or analytical tools. Additionally, it enhances data streams with contextual insights, which boosts the accuracy of threat detection and helps reduce the occurrence of false positives. Observo AI also features a cloud-based searchable data lake that streamlines data storage and retrieval, making it easier for organizations to access critical information when needed. This comprehensive approach ensures that enterprises can keep pace with the evolving landscape of cybersecurity threats.
  • 18
    Onum Reviews
    Onum serves as a real-time data intelligence platform designed to equip security and IT teams with the ability to extract actionable insights from in-stream data, thereby enhancing both decision-making speed and operational effectiveness. By analyzing data at its origin, Onum allows for decision-making in mere milliseconds rather than taking minutes, which streamlines intricate workflows and cuts down on expenses. It includes robust data reduction functionalities that smartly filter and condense data at the source, guaranteeing that only essential information is sent to analytics platforms, thus lowering storage needs and related costs. Additionally, Onum features data enrichment capabilities that convert raw data into useful intelligence by providing context and correlations in real time. The platform also facilitates seamless data pipeline management through effective data routing, ensuring that the appropriate data is dispatched to the correct destinations almost instantly, and it accommodates a variety of data sources and destinations. This comprehensive approach not only enhances operational agility but also empowers teams to make informed decisions swiftly.
  • 19
    Unravel Reviews
    Unravel empowers data functionality across various environments, whether it’s Azure, AWS, GCP, or your own data center, by enhancing performance, automating issue resolution, and managing expenses effectively. It enables users to oversee, control, and optimize their data pipelines both in the cloud and on-site, facilitating a more consistent performance in the applications that drive business success. With Unravel, you gain a holistic perspective of your complete data ecosystem. The platform aggregates performance metrics from all systems, applications, and platforms across any cloud, employing agentless solutions and machine learning to thoroughly model your data flows from start to finish. This allows for an in-depth exploration, correlation, and analysis of every component within your contemporary data and cloud infrastructure. Unravel's intelligent data model uncovers interdependencies, identifies challenges, and highlights potential improvements, providing insight into how applications and resources are utilized, as well as distinguishing between effective and ineffective elements. Instead of merely tracking performance, you can swiftly identify problems and implement solutions. Utilize AI-enhanced suggestions to automate enhancements, reduce expenses, and strategically prepare for future needs. Ultimately, Unravel not only optimizes your data management strategies but also supports a proactive approach to data-driven decision-making.
  • 20
    Crux Reviews
    Discover the reasons why leading companies are turning to the Crux external data automation platform to enhance their external data integration, transformation, and monitoring without the need for additional personnel. Our cloud-native technology streamlines the processes of ingesting, preparing, observing, and consistently delivering any external dataset. Consequently, this enables you to receive high-quality data precisely where and when you need it, formatted correctly. Utilize features such as automated schema detection, inferred delivery schedules, and lifecycle management to swiftly create pipelines from diverse external data sources. Moreover, boost data discoverability across your organization with a private catalog that links and matches various data products. Additionally, you can enrich, validate, and transform any dataset, allowing for seamless integration with other data sources, which ultimately speeds up your analytics processes. With these capabilities, your organization can fully leverage its data assets to drive informed decision-making and strategic growth.
  • 21
    Adele Reviews
    Adele is a user-friendly platform that streamlines the process of transferring data pipelines from outdated systems to a designated target platform. It gives users comprehensive control over the migration process, and its smart mapping features provide crucial insights. By reverse-engineering existing data pipelines, Adele generates data lineage maps and retrieves metadata, thereby improving transparency and comprehension of data movement. This approach not only facilitates the migration but also fosters a deeper understanding of the data landscape within organizations.
  • Previous
  • You're on page 1
  • Next