Best Data Management Software for Trino

Find and compare the best Data Management software for Trino in 2025

Use the comparison tool below to compare the top Data Management software for Trino on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud Platform Reviews
    Top Pick

    Google Cloud Platform

    Google

    Free ($300 in free credits)
    55,888 Ratings
    See Software
    Learn More
    Google Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging.
  • 2
    icCube Reviews
    Top Pick

    icCube

    $20,000/year
    30 Ratings
    Top Pick See Software
    Learn More
    icCube, a Swiss-made analytics solution, is crafted for B2B SaaS product and development teams aiming to integrate advanced analytics directly into their applications. Our dashboards are designed to merge effortlessly within the SaaS solution's UI and UX, powered by icCube’s strong analytical engine, which supports complex data models with high-level security features. Adopting a developer-to-developer approach, the icCube team guides clients to ensure a smooth, rapid transition to production. We recognize the challenges of data navigation, so we’re thrilled to offer our Data Analytics Boutique Services. Tailored for both new and existing clients, this suite provides seamless data integration, fortified security, deep insights, automated decision-making, and visually impactful reports. At every project stage and throughout the product lifecycle, we partner closely with our clients, from providing quick feedback to full project and product launches.
  • 3
    Datadog Reviews
    Top Pick

    Datadog

    Datadog

    $15.00/host/month
    7 Ratings
    Datadog is the cloud-age monitoring, security, and analytics platform for developers, IT operation teams, security engineers, and business users. Our SaaS platform integrates monitoring of infrastructure, application performance monitoring, and log management to provide unified and real-time monitoring of all our customers' technology stacks. Datadog is used by companies of all sizes and in many industries to enable digital transformation, cloud migration, collaboration among development, operations and security teams, accelerate time-to-market for applications, reduce the time it takes to solve problems, secure applications and infrastructure and understand user behavior to track key business metrics.
  • 4
    Tableau Reviews
    Top Pick
    Utilize Tableau to acquire, create, and evaluate business data while deriving valuable insights through its comprehensive business intelligence (BI) and analytics capabilities. This powerful tool enables users to gather information from a variety of sources, including spreadsheets, SQL databases, Salesforce, and various cloud applications. With Tableau's real-time visual analytics and interactive dashboards, users can dissect and analyze datasets, leading to pertinent insights and the identification of new business opportunities. Additionally, Tableau offers customization options that cater to a wide range of industry sectors, such as finance, telecommunications, and beyond, ensuring that it meets the unique needs of each vertical. As a result, organizations can leverage Tableau to enhance decision-making processes and drive growth effectively.
  • 5
    MySQL Reviews
    MySQL stands out as the most widely used open source database globally. Thanks to its established track record in performance, dependability, and user-friendliness, it has emerged as the preferred database for web applications, powering notable platforms such as Facebook, Twitter, and YouTube, alongside the top five websites. Furthermore, MySQL is also highly favored as an embedded database solution, being distributed by numerous independent software vendors and original equipment manufacturers. Its versatility and robust features contribute to its widespread adoption across various industries.
  • 6
    DataClarity Unlimited Analytics Reviews
    The world's only free modern embeddable data and analytics platform that provides a self-service, powerful, secure & seamless end-to-end experience. DataClarity Unlimited Analytics Benefits: SIMPLIFIED DATA INTEGRATION – Easily connect, join, curate, cache & catalog diverse data through drag and drop, custom SQL builder and AI-powered data profiling. | INTERACTIVE REPORTS & DASHBOARDS – craft compelling storyboards using 80 stunning visualizations, geospatial maps & flexibility to bring your own charts. | REAL-TIME ANALYSIS – Perform advanced analysis & data exploration using drill-down, drill-through, filters, built-in statistical & predictive models, or your own Python and R code. | SMOOTH APPLICATION INTEGRATION – Achieve seamless integration with robust APIs, tailor-made configurations and flexible embedding features. | SECURITY and GOVERNANCE – Comply with your security guidelines, governance standards, multitenancy, row-level data protection, and SSO (Single Sign-On). DataClarity Unlimited Analytics is tailored for ISVs , SaaS providers, consultancies, and IT teams and includes: free forever software license, free version updates & access to support resources, and optional paid 24/7 production support with SLA.
  • 7
    Archon Data Store Reviews
    The Archon Data Store™ is a robust and secure platform built on open-source principles, tailored for archiving and managing extensive data lakes. Its compliance capabilities and small footprint facilitate large-scale data search, processing, and analysis across structured, unstructured, and semi-structured data within an organization. By merging the essential characteristics of both data warehouses and data lakes, Archon Data Store creates a seamless and efficient platform. This integration effectively breaks down data silos, enhancing data engineering, analytics, data science, and machine learning workflows. With its focus on centralized metadata, optimized storage solutions, and distributed computing, the Archon Data Store ensures the preservation of data integrity. Additionally, its cohesive strategies for data management, security, and governance empower organizations to operate more effectively and foster innovation at a quicker pace. By offering a singular platform for both archiving and analyzing all organizational data, Archon Data Store not only delivers significant operational efficiencies but also positions your organization for future growth and agility.
  • 8
    Apache Iceberg Reviews

    Apache Iceberg

    Apache Software Foundation

    Free
    Iceberg is an advanced format designed for managing extensive analytical tables efficiently. It combines the dependability and ease of SQL tables with the capabilities required for big data, enabling multiple engines such as Spark, Trino, Flink, Presto, Hive, and Impala to access and manipulate the same tables concurrently without issues. The format allows for versatile SQL operations to incorporate new data, modify existing records, and execute precise deletions. Additionally, Iceberg can optimize read performance by eagerly rewriting data files or utilize delete deltas to facilitate quicker updates. It also streamlines the complex and often error-prone process of generating partition values for table rows while automatically bypassing unnecessary partitions and files. Fast queries do not require extra filtering, and the structure of the table can be adjusted dynamically as data and query patterns evolve, ensuring efficiency and adaptability in data management. This adaptability makes Iceberg an essential tool in modern data workflows.
  • 9
    Coginiti Reviews

    Coginiti

    Coginiti

    $189/user/year
    Coginiti is the AI-enabled enterprise Data Workspace that empowers everyone to get fast, consistent answers to any business questions. Coginiti helps you find and search for metrics that are approved for your use case, accelerating the lifecycle of analytic development from development to certification. Coginiti integrates the functionality needed to build, approve and curate analytics for reuse across all business domains, while adhering your data governance policies and standards. Coginiti’s collaborative data workspace is trusted by teams in the insurance, healthcare, financial services and retail/consumer packaged goods industries to deliver value to customers.
  • 10
    DQOps Reviews

    DQOps

    DQOps

    $499 per month
    DQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code.
  • 11
    Tabular Reviews

    Tabular

    Tabular

    $100 per month
    Tabular is an innovative open table storage solution designed by the same team behind Apache Iceberg, allowing seamless integration with various computing engines and frameworks. By leveraging this technology, users can significantly reduce both query times and storage expenses, achieving savings of up to 50%. It centralizes the enforcement of role-based access control (RBAC) policies, ensuring data security is consistently maintained. The platform is compatible with multiple query engines and frameworks, such as Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python, offering extensive flexibility. With features like intelligent compaction and clustering, as well as other automated data services, Tabular further enhances efficiency by minimizing storage costs and speeding up query performance. It allows for unified data access at various levels, whether at the database or table. Additionally, managing RBAC controls is straightforward, ensuring that security measures are not only consistent but also easily auditable. Tabular excels in usability, providing robust ingestion capabilities and performance, all while maintaining effective RBAC management. Ultimately, it empowers users to select from a variety of top-tier compute engines, each tailored to their specific strengths, while also enabling precise privilege assignments at the database, table, or even column level. This combination of features makes Tabular a powerful tool for modern data management.
  • 12
    Hue Reviews
    Hue delivers an exceptional querying experience through its advanced autocomplete features and sophisticated query editor components. Users can seamlessly navigate tables and storage browsers, utilizing their existing knowledge of data catalogs. This functionality assists in locating the right data within extensive databases while also enabling self-documentation. Furthermore, the platform supports users in crafting SQL queries and provides rich previews for links, allowing for direct sharing in Slack from the editor. There is a variety of applications available, each tailored to specific querying needs, and data sources can be initially explored through the intuitive browsers. The editor excels particularly in SQL queries, equipped with intelligent autocomplete, risk alerts, and self-service troubleshooting capabilities. While dashboards are designed to visualize indexed data, they also possess the ability to query SQL databases effectively. Users can now search for specific cell values in tables, with results highlighted for easy identification. Additionally, Hue's SQL editing capabilities are considered among the finest globally, ensuring a streamlined and efficient experience for all users. This combination of features makes Hue a powerful tool for data exploration and management.
  • 13
    StarRocks Reviews
    Regardless of whether your project involves a single table or numerous tables, StarRocks guarantees an impressive performance improvement of at least 300% when compared to other widely used solutions. With its comprehensive array of connectors, you can seamlessly ingest streaming data and capture information in real time, ensuring that you always have access to the latest insights. The query engine is tailored to suit your specific use cases, allowing for adaptable analytics without the need to relocate data or modify SQL queries. This provides an effortless way to scale your analytics capabilities as required. StarRocks not only facilitates a swift transition from data to actionable insights, but also stands out with its unmatched performance, offering a holistic OLAP solution that addresses the most prevalent data analytics requirements. Its advanced memory-and-disk-based caching framework is purpose-built to reduce I/O overhead associated with retrieving data from external storage, significantly enhancing query performance while maintaining efficiency. This unique combination of features ensures that users can maximize their data's potential without unnecessary delays.
  • 14
    SelectDB Reviews

    SelectDB

    SelectDB

    $0.22 per hour
    SelectDB is an innovative data warehouse built on Apache Doris, designed for swift query analysis on extensive real-time datasets. Transitioning from Clickhouse to Apache Doris facilitates the separation of the data lake and promotes an upgrade to a more efficient lake warehouse structure. This high-speed OLAP system handles nearly a billion query requests daily, catering to various data service needs across multiple scenarios. To address issues such as storage redundancy, resource contention, and the complexities of data governance and querying, the original lake warehouse architecture was restructured with Apache Doris. By leveraging Doris's capabilities for materialized view rewriting and automated services, it achieves both high-performance data querying and adaptable data governance strategies. The system allows for real-time data writing within seconds and enables the synchronization of streaming data from databases. With a storage engine that supports immediate updates and enhancements, it also facilitates real-time pre-polymerization of data for improved processing efficiency. This integration marks a significant advancement in the management and utilization of large-scale real-time data.
  • 15
    Apache Phoenix Reviews

    Apache Phoenix

    Apache Software Foundation

    Free
    Apache Phoenix provides low-latency OLTP and operational analytics on Hadoop by merging the advantages of traditional SQL with the flexibility of NoSQL. It utilizes HBase as its underlying storage, offering full ACID transaction support alongside late-bound, schema-on-read capabilities. Fully compatible with other Hadoop ecosystem tools such as Spark, Hive, Pig, Flume, and MapReduce, it establishes itself as a reliable data platform for OLTP and operational analytics through well-defined, industry-standard APIs. When a SQL query is executed, Apache Phoenix converts it into a series of HBase scans, managing these scans to deliver standard JDBC result sets seamlessly. The framework's direct interaction with the HBase API, along with the implementation of coprocessors and custom filters, enables performance metrics that can reach milliseconds for simple queries and seconds for larger datasets containing tens of millions of rows. This efficiency positions Apache Phoenix as a formidable choice for businesses looking to enhance their data processing capabilities in a Big Data environment.
  • 16
    Stackable Reviews
    The Stackable data platform was crafted with a focus on flexibility and openness. It offers a carefully selected range of top-notch open source data applications, including Apache Kafka, Apache Druid, Trino, and Apache Spark. Unlike many competitors that either promote their proprietary solutions or enhance vendor dependence, Stackable embraces a more innovative strategy. All data applications are designed to integrate effortlessly and can be added or removed with remarkable speed. Built on Kubernetes, it is capable of operating in any environment, whether on-premises or in the cloud. To initiate your first Stackable data platform, all you require is stackablectl along with a Kubernetes cluster. In just a few minutes, you will be poised to begin working with your data. You can set up your one-line startup command right here. Much like kubectl, stackablectl is tailored for seamless interaction with the Stackable Data Platform. Utilize this command line tool for deploying and managing stackable data applications on Kubernetes. With stackablectl, you have the ability to create, delete, and update components efficiently, ensuring a smooth operational experience for your data management needs. The versatility and ease of use make it an excellent choice for developers and data engineers alike.
  • 17
    DataHub Reviews
    DataHub is a versatile open-source metadata platform crafted to enhance data discovery, observability, and governance within various data environments. It empowers organizations to easily find reliable data, providing customized experiences for users while avoiding disruptions through precise lineage tracking at both the cross-platform and column levels. By offering a holistic view of business, operational, and technical contexts, DataHub instills trust in your data repository. The platform features automated data quality assessments along with AI-driven anomaly detection, alerting teams to emerging issues and consolidating incident management. With comprehensive lineage information, documentation, and ownership details, DataHub streamlines the resolution of problems. Furthermore, it automates governance processes by classifying evolving assets, significantly reducing manual effort with GenAI documentation, AI-based classification, and intelligent propagation mechanisms. Additionally, DataHub's flexible architecture accommodates more than 70 native integrations, making it a robust choice for organizations seeking to optimize their data ecosystems. This makes it an invaluable tool for any organization looking to enhance their data management capabilities.
  • 18
    NoSQL Reviews
    NoSQL refers to a specialized programming language designed for interacting with, managing, and altering non-tabular database systems. This type of database, which stands for "non-SQL" or "non-relational," allows for data storage and retrieval through structures that differ from the traditional tabular formats found in relational databases. Although such databases have been around since the late 1960s, the term "NoSQL" only emerged in the early 2000s as a response to the evolving demands of Web 2.0 applications. These databases have gained popularity for handling big data and supporting real-time web functionalities. Often referred to as Not Only SQL, NoSQL systems highlight their capability to accommodate SQL-like query languages while coexisting with SQL databases in hybrid architectures. Many NoSQL solutions prioritize availability, partition tolerance, and performance over strict consistency, as outlined by the CAP theorem. Despite their advantages, the broader acceptance of NoSQL databases is hindered by the necessity for low-level query languages that may pose challenges for users. As the landscape of data management continues to evolve, the role of NoSQL databases is likely to expand even further.
  • 19
    Embeddable Reviews

    Embeddable

    Embeddable

    On request
    The toolkit to build interactive, fully customized analytics experiences into your apps. Embeddable believes that you shouldn't be forced to choose between buying or building your analytics solution. While creating charts, graphs and dashboards is an expensive, ongoing commitment, the out-of-the box solutions do not deliver the user experience that you desire for your clients. Welcome to the world of limitless creativity where you can create analytics experiences that are truly remarkable, and surpass your customers' expectations. Create your perfect experience using best-in class open source libraries. Embeddable displays data in your app using a secure read only transaction, regardless of whether your data is stored in a central data warehouse or distributed across multiple microservices. Let your imagination run wild and create the analytics solution you want, without compromising.
  • 20
    Onehouse Reviews
    Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization.
  • 21
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 22
    Presto Reviews

    Presto

    Presto Foundation

    Presto serves as an open-source distributed SQL query engine designed for executing interactive analytic queries across data sources that can range in size from gigabytes to petabytes. It addresses the challenges faced by data engineers who often navigate multiple query languages and interfaces tied to isolated databases and storage systems. Presto stands out as a quick and dependable solution by offering a unified ANSI SQL interface for comprehensive data analytics and your open lakehouse. Relying on different engines for various workloads often leads to the necessity of re-platforming in the future. However, with Presto, you benefit from a singular, familiar ANSI SQL language and one engine for all your analytic needs, negating the need to transition to another lakehouse engine. Additionally, it efficiently accommodates both interactive and batch workloads, handling small to large datasets and scaling from just a few users to thousands. By providing a straightforward ANSI SQL interface for all your data residing in varied siloed systems, Presto effectively integrates your entire data ecosystem, fostering seamless collaboration and accessibility across platforms. Ultimately, this integration empowers organizations to make more informed decisions based on a comprehensive view of their data landscape.
  • 23
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    The Apache Hadoop software library serves as a framework for the distributed processing of extensive data sets across computer clusters, utilizing straightforward programming models. It is built to scale from individual servers to thousands of machines, each providing local computation and storage capabilities. Instead of depending on hardware for high availability, the library is engineered to identify and manage failures within the application layer, ensuring that a highly available service can run on a cluster of machines that may be susceptible to disruptions. Numerous companies and organizations leverage Hadoop for both research initiatives and production environments. Users are invited to join the Hadoop PoweredBy wiki page to showcase their usage. The latest version, Apache Hadoop 3.3.4, introduces several notable improvements compared to the earlier major release, hadoop-3.2, enhancing its overall performance and functionality. This continuous evolution of Hadoop reflects the growing need for efficient data processing solutions in today's data-driven landscape.
  • 24
    SQL Reviews
    SQL is a specialized programming language designed specifically for the purpose of retrieving, organizing, and modifying data within relational databases and the systems that manage them. Its use is essential for effective database management and interaction.
  • 25
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • Previous
  • You're on page 1
  • 2
  • Next