Best Data Management Software for Stackable

Find and compare the best Data Management software for Stackable in 2025

Use the comparison tool below to compare the top Data Management software for Stackable on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Apache Hive Reviews

    Apache Hive

    Apache Software Foundation

    1 Rating
    Apache Hive is a data warehouse solution that enables the efficient reading, writing, and management of substantial datasets stored across distributed systems using SQL. It allows users to apply structure to pre-existing data in storage. To facilitate user access, it comes equipped with a command line interface and a JDBC driver. As an open-source initiative, Apache Hive is maintained by dedicated volunteers at the Apache Software Foundation. Initially part of the Apache® Hadoop® ecosystem, it has since evolved into an independent top-level project. We invite you to explore the project further and share your knowledge to enhance its development. Users typically implement traditional SQL queries through the MapReduce Java API, which can complicate the execution of SQL applications on distributed data. However, Hive simplifies this process by offering a SQL abstraction that allows for the integration of SQL-like queries, known as HiveQL, into the underlying Java framework, eliminating the need to delve into the complexities of the low-level Java API. This makes working with large datasets more accessible and efficient for developers.
  • 2
    Apache Kafka Reviews

    Apache Kafka

    The Apache Software Foundation

    1 Rating
    Apache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures.
  • 3
    Trino Reviews
    Trino is a remarkably fast query engine designed to operate at exceptional speeds. It serves as a high-performance, distributed SQL query engine tailored for big data analytics, enabling users to delve into their vast data environments. Constructed for optimal efficiency, Trino excels in low-latency analytics and is extensively utilized by some of the largest enterprises globally to perform queries on exabyte-scale data lakes and enormous data warehouses. It accommodates a variety of scenarios, including interactive ad-hoc analytics, extensive batch queries spanning several hours, and high-throughput applications that require rapid sub-second query responses. Trino adheres to ANSI SQL standards, making it compatible with popular business intelligence tools like R, Tableau, Power BI, and Superset. Moreover, it allows direct querying of data from various sources such as Hadoop, S3, Cassandra, and MySQL, eliminating the need for cumbersome, time-consuming, and error-prone data copying processes. This capability empowers users to access and analyze data from multiple systems seamlessly within a single query. Such versatility makes Trino a powerful asset in today's data-driven landscape.
  • 4
    Apache Iceberg Reviews

    Apache Iceberg

    Apache Software Foundation

    Free
    Iceberg is an advanced format designed for managing extensive analytical tables efficiently. It combines the dependability and ease of SQL tables with the capabilities required for big data, enabling multiple engines such as Spark, Trino, Flink, Presto, Hive, and Impala to access and manipulate the same tables concurrently without issues. The format allows for versatile SQL operations to incorporate new data, modify existing records, and execute precise deletions. Additionally, Iceberg can optimize read performance by eagerly rewriting data files or utilize delete deltas to facilitate quicker updates. It also streamlines the complex and often error-prone process of generating partition values for table rows while automatically bypassing unnecessary partitions and files. Fast queries do not require extra filtering, and the structure of the table can be adjusted dynamically as data and query patterns evolve, ensuring efficiency and adaptability in data management. This adaptability makes Iceberg an essential tool in modern data workflows.
  • 5
    Prometheus Reviews
    Enhance your metrics and alerting capabilities using a top-tier open-source monitoring tool. Prometheus inherently organizes all data as time series, which consist of sequences of timestamped values associated with the same metric and a specific set of labeled dimensions. In addition to the stored time series, Prometheus has the capability to create temporary derived time series based on query outcomes. The tool features a powerful query language known as PromQL (Prometheus Query Language), allowing users to select and aggregate time series data in real time. The output from an expression can be displayed as a graph, viewed in tabular format through Prometheus’s expression browser, or accessed by external systems through the HTTP API. Configuration of Prometheus is achieved through a combination of command-line flags and a configuration file, where the flags are used to set immutable system parameters like storage locations and retention limits for both disk and memory. This dual method of configuration ensures a flexible and tailored monitoring setup that can adapt to various user needs. For those interested in exploring this robust tool, further details can be found at: https://sourceforge.net/projects/prometheus.mirror/
  • 6
    Apache Druid Reviews
    Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions.
  • 7
    Apache HBase Reviews

    Apache HBase

    The Apache Software Foundation

    Utilize Apache HBase™ when you require immediate and random read/write capabilities for your extensive data sets. This initiative aims to manage exceptionally large tables that can contain billions of rows across millions of columns on clusters built from standard hardware. It features automatic failover capabilities between RegionServers to ensure reliability. Additionally, it provides an intuitive Java API for client interaction, along with a Thrift gateway and a RESTful Web service that accommodates various data encoding formats, including XML, Protobuf, and binary. Furthermore, it supports the export of metrics through the Hadoop metrics system, enabling data to be sent to files or Ganglia, as well as via JMX for enhanced monitoring and management. With these features, HBase stands out as a robust solution for handling big data challenges effectively.
  • 8
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics.
  • 9
    Apache NiFi Reviews

    Apache NiFi

    Apache Software Foundation

    A user-friendly, robust, and dependable system for data processing and distribution is offered by Apache NiFi, which facilitates the creation of efficient and scalable directed graphs for routing, transforming, and mediating data. Among its various high-level functions and goals, Apache NiFi provides a web-based user interface that ensures an uninterrupted experience for design, control, feedback, and monitoring. It is designed to be highly configurable, loss-tolerant, and capable of low latency and high throughput, while also allowing for dynamic prioritization of data flows. Additionally, users can alter the flow in real-time, manage back pressure, and trace data provenance from start to finish, as it is built with extensibility in mind. You can also develop custom processors and more, which fosters rapid development and thorough testing. Security features are robust, including SSL, SSH, HTTPS, and content encryption, among others. The system supports multi-tenant authorization along with internal policy and authorization management. Also, NiFi consists of various web applications, such as a web UI, web API, documentation, and custom user interfaces, necessitating the configuration of your mapping to the root path for optimal functionality. This flexibility and range of features make Apache NiFi an essential tool for modern data workflows.
  • 10
    Apache Airflow Reviews

    Apache Airflow

    The Apache Software Foundation

    Airflow is a community-driven platform designed for the programmatic creation, scheduling, and monitoring of workflows. With its modular architecture, Airflow employs a message queue to manage an unlimited number of workers, making it highly scalable. The system is capable of handling complex operations through its ability to define pipelines using Python, facilitating dynamic pipeline generation. This flexibility enables developers to write code that can create pipelines on the fly. Users can easily create custom operators and expand existing libraries, tailoring the abstraction level to meet their specific needs. The pipelines in Airflow are both concise and clear, with built-in parametrization supported by the robust Jinja templating engine. Eliminate the need for complex command-line operations or obscure XML configurations! Instead, leverage standard Python functionalities to construct workflows, incorporating date-time formats for scheduling and utilizing loops for the dynamic generation of tasks. This approach ensures that you retain complete freedom and adaptability when designing your workflows, allowing you to efficiently respond to changing requirements. Additionally, Airflow's user-friendly interface empowers teams to collaboratively refine and optimize their workflow processes.
  • Previous
  • You're on page 1
  • Next