Best Data Management Software for Delta Lake

Find and compare the best Data Management software for Delta Lake in 2025

Use the comparison tool below to compare the top Data Management software for Delta Lake on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    StarTree Reviews
    See Software
    Learn More
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 2
    Tableau Reviews
    Top Pick
    Utilize Tableau to acquire, create, and evaluate business data while deriving valuable insights through its comprehensive business intelligence (BI) and analytics capabilities. This powerful tool enables users to gather information from a variety of sources, including spreadsheets, SQL databases, Salesforce, and various cloud applications. With Tableau's real-time visual analytics and interactive dashboards, users can dissect and analyze datasets, leading to pertinent insights and the identification of new business opportunities. Additionally, Tableau offers customization options that cater to a wide range of industry sectors, such as finance, telecommunications, and beyond, ensuring that it meets the unique needs of each vertical. As a result, organizations can leverage Tableau to enhance decision-making processes and drive growth effectively.
  • 3
    MySQL Reviews
    MySQL stands out as the most widely used open source database globally. Thanks to its established track record in performance, dependability, and user-friendliness, it has emerged as the preferred database for web applications, powering notable platforms such as Facebook, Twitter, and YouTube, alongside the top five websites. Furthermore, MySQL is also highly favored as an embedded database solution, being distributed by numerous independent software vendors and original equipment manufacturers. Its versatility and robust features contribute to its widespread adoption across various industries.
  • 4
    Kyvos Reviews
    Kyvos is a semantic data lakehouse designed to speed up every BI and AI initiative, offering lightning-fast analytics at an infinite scale with maximum cost efficiency and the lowest possible carbon footprint. The platform provides high-performance storage for both structured and unstructured data, ensuring trusted data for AI applications. It is built to scale seamlessly, making it an ideal solution for enterprises aiming to maximize their data’s potential. Kyvos is infrastructure-agnostic, which means it fits perfectly into any modern data or AI stack, whether deployed on-premises or in the cloud. Leading companies rely on Kyvos as a unified source for cost-effective, high-performance analytics that foster deep, meaningful insights and context-aware AI application development. By leveraging Kyvos, organizations can break through data barriers, accelerate decision-making, and enhance their AI-driven initiatives. The platform's flexibility allows businesses to create a scalable foundation for a range of data-driven solutions.
  • 5
    IBM StreamSets Reviews

    IBM StreamSets

    IBM

    $1000 per month
    IBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations.
  • 6
    Hackolade Reviews

    Hackolade

    Hackolade

    €100 per month
    Hackolade is the pioneer for data modeling of NoSQL and multi-model databases, providing a comprehensive suite of data modeling tools for various NoSQL databases and APIs. Hackolade is the only data modeling tool for MongoDB, Neo4j, Cassandra, ArangoDB, BigQuery, Couchbase, Cosmos DB, Databricks, DocumentDB, DynamoDB, Elasticsearch, EventBridge Schema Registry, Glue Data Catalog, HBase, Hive, Firebase/Firestore, JanusGraph, MariaDB, MarkLogic, MySQL, Oracle, PostgreSQL, Redshift, ScyllaDB, Snowflake, SQL Server, Synapse, TinkerPop, YugabyteDB, etc. It also applies its visual design to Avro, JSON Schema, Parquet, Protobuf, Swagger and OpenAPI, and is rapidly adding new targets for its physical data modeling engine. The software is user-friendly and simple to use yet provides powerful visuals and graphic data modeling to smooth the onboarding of NoSQL technology. Its software tools help functional analysts, designers, architects, and DBAs involved with NoSQL technology achieve greater transparency and control, resulting in reduced development time, increased application quality, and lower execution risks across the enterprise.
  • 7
    Ascend Reviews

    Ascend

    Ascend

    $0.98 per DFC
    Ascend provides data teams with a streamlined and automated platform that allows them to ingest, transform, and orchestrate their entire data engineering and analytics workloads at an unprecedented speed, achieving results ten times faster than before. This tool empowers teams that are often hindered by bottlenecks to effectively build, manage, and enhance the ever-growing volume of data workloads they face. With the support of DataAware intelligence, Ascend operates continuously in the background to ensure data integrity and optimize data workloads, significantly cutting down maintenance time by as much as 90%. Users can effortlessly create, refine, and execute data transformations through Ascend’s versatile flex-code interface, which supports the use of multiple programming languages such as SQL, Python, Java, and Scala interchangeably. Additionally, users can quickly access critical metrics including data lineage, data profiles, job and user logs, and system health indicators all in one view. Ascend also offers native connections to a continually expanding array of common data sources through its Flex-Code data connectors, ensuring seamless integration. This comprehensive approach not only enhances efficiency but also fosters stronger collaboration among data teams.
  • 8
    Secoda Reviews

    Secoda

    Secoda

    $50 per user per month
    With Secoda AI enhancing your metadata, you can effortlessly obtain contextual search results spanning your tables, columns, dashboards, metrics, and queries. This innovative tool also assists in generating documentation and queries from your metadata, which can save your team countless hours that would otherwise be spent on tedious tasks and repetitive data requests. You can easily conduct searches across all columns, tables, dashboards, events, and metrics with just a few clicks. The AI-driven search functionality allows you to pose any question regarding your data and receive quick, relevant answers. By integrating data discovery seamlessly into your workflow through our API, you can perform bulk updates, label PII data, manage technical debt, create custom integrations, pinpoint underutilized resources, and much more. By eliminating manual errors, you can establish complete confidence in your knowledge repository, ensuring that your team has the most accurate and reliable information at their fingertips. This transformative approach not only enhances productivity but also fosters a more informed decision-making process throughout your organization.
  • 9
    PuppyGraph Reviews
    PuppyGraph allows you to effortlessly query one or multiple data sources through a cohesive graph model. Traditional graph databases can be costly, require extensive setup time, and necessitate a specialized team to maintain. They often take hours to execute multi-hop queries and encounter difficulties when managing datasets larger than 100GB. Having a separate graph database can complicate your overall architecture due to fragile ETL processes, ultimately leading to increased total cost of ownership (TCO). With PuppyGraph, you can connect to any data source, regardless of its location, enabling cross-cloud and cross-region graph analytics without the need for intricate ETLs or data duplication. By directly linking to your data warehouses and lakes, PuppyGraph allows you to query your data as a graph without the burden of constructing and maintaining lengthy ETL pipelines typical of conventional graph database configurations. There's no longer a need to deal with delays in data access or unreliable ETL operations. Additionally, PuppyGraph resolves scalability challenges associated with graphs by decoupling computation from storage, allowing for more efficient data handling. This innovative approach not only enhances performance but also simplifies your data management strategy.
  • 10
    DataHub Reviews
    DataHub is a versatile open-source metadata platform crafted to enhance data discovery, observability, and governance within various data environments. It empowers organizations to easily find reliable data, providing customized experiences for users while avoiding disruptions through precise lineage tracking at both the cross-platform and column levels. By offering a holistic view of business, operational, and technical contexts, DataHub instills trust in your data repository. The platform features automated data quality assessments along with AI-driven anomaly detection, alerting teams to emerging issues and consolidating incident management. With comprehensive lineage information, documentation, and ownership details, DataHub streamlines the resolution of problems. Furthermore, it automates governance processes by classifying evolving assets, significantly reducing manual effort with GenAI documentation, AI-based classification, and intelligent propagation mechanisms. Additionally, DataHub's flexible architecture accommodates more than 70 native integrations, making it a robust choice for organizations seeking to optimize their data ecosystems. This makes it an invaluable tool for any organization looking to enhance their data management capabilities.
  • 11
    Onehouse Reviews
    Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization.
  • 12
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 13
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics.
  • 14
    IBM Databand Reviews
    Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations.
  • 15
    Okera Reviews
    Complexity is the enemy of security. Simplify and scale fine-grained data access control. Dynamically authorize and audit every query to comply with data security and privacy regulations. Okera integrates seamlessly into your infrastructure – in the cloud, on premise, and with cloud-native and legacy tools. With Okera, data users can use data responsibly, while protecting them from inappropriately accessing data that is confidential, personally identifiable, or regulated. Okera’s robust audit capabilities and data usage intelligence deliver the real-time and historical information that data security, compliance, and data delivery teams need to respond quickly to incidents, optimize processes, and analyze the performance of enterprise data initiatives.
  • 16
    lakeFS Reviews
    lakeFS allows you to control your data lake similarly to how you manage your source code, facilitating parallel pipelines for experimentation as well as continuous integration and deployment for your data. This platform streamlines the workflows of engineers, data scientists, and analysts who are driving innovation through data. As an open-source solution, lakeFS enhances the resilience and manageability of object-storage-based data lakes. With lakeFS, you can execute reliable, atomic, and versioned operations on your data lake, encompassing everything from intricate ETL processes to advanced data science and analytics tasks. It is compatible with major cloud storage options, including AWS S3, Azure Blob Storage, and Google Cloud Storage (GCS). Furthermore, lakeFS seamlessly integrates with a variety of modern data frameworks such as Spark, Hive, AWS Athena, and Presto, thanks to its API compatibility with S3. The platform features a Git-like model for branching and committing that can efficiently scale to handle exabytes of data while leveraging the storage capabilities of S3, GCS, or Azure Blob. In addition, lakeFS empowers teams to collaborate more effectively by allowing multiple users to work on the same dataset without conflicts, making it an invaluable tool for data-driven organizations.
  • 17
    Amundsen Reviews
    Uncover and rely on data for your analyses and models while enhancing productivity by dismantling silos. Gain instant insights into data usage by others and locate data within your organization effortlessly through a straightforward text search. Utilizing a PageRank-inspired algorithm, the system suggests results based on names, descriptions, tags, and user activity associated with tables or dashboards. Foster confidence in your data with automated and curated metadata that includes detailed information on tables and columns, highlights frequent users, indicates the last update, provides statistics, and offers data previews when authorized. Streamline the process by linking the ETL jobs and the code that generated the data, making it easier to manage table and column descriptions while minimizing confusion about which tables to utilize and their contents. Additionally, observe which data sets are commonly accessed, owned, or marked by your colleagues, and discover the most frequent queries for any table by reviewing the dashboards that leverage that specific data. This comprehensive approach not only enhances collaboration but also drives informed decision-making across teams.
  • 18
    Feast Reviews
    Enable your offline data to support real-time predictions seamlessly without the need for custom pipelines. Maintain data consistency between offline training and online inference to avoid discrepancies in results. Streamline data engineering processes within a unified framework for better efficiency. Teams can leverage Feast as the cornerstone of their internal machine learning platforms. Feast eliminates the necessity for dedicated infrastructure management, instead opting to utilize existing resources while provisioning new ones when necessary. If you prefer not to use a managed solution, you are prepared to handle your own Feast implementation and maintenance. Your engineering team is equipped to support both the deployment and management of Feast effectively. You aim to create pipelines that convert raw data into features within a different system and seek to integrate with that system. With specific needs in mind, you want to expand functionalities based on an open-source foundation. Additionally, this approach not only enhances your data processing capabilities but also allows for greater flexibility and customization tailored to your unique business requirements.
  • 19
    Acryl Data Reviews
    Bid farewell to abandoned data catalogs. Acryl Cloud accelerates time-to-value by implementing Shift Left methodologies for data producers and providing an easy-to-navigate interface for data consumers. It enables the continuous monitoring of data quality incidents in real-time, automating anomaly detection to avert disruptions and facilitating swift resolutions when issues arise. With support for both push-based and pull-based metadata ingestion, Acryl Cloud simplifies maintenance, ensuring that information remains reliable, current, and authoritative. Data should be actionable and operational. Move past mere visibility and leverage automated Metadata Tests to consistently reveal data insights and identify new opportunities for enhancement. Additionally, enhance clarity and speed up resolutions with defined asset ownership, automatic detection, streamlined notifications, and temporal lineage for tracing the origins of issues while fostering a culture of proactive data management.
  • 20
    Arroyo Reviews
    Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications.
  • 21
    Timbr.ai Reviews
    The intelligent semantic layer merges data with its business context and interconnections, consolidates metrics, and speeds up the production of data products by allowing for SQL queries that are 90% shorter. Users can easily model the data using familiar business terminology, creating a shared understanding and aligning the metrics with business objectives. By defining semantic relationships that replace traditional JOIN operations, queries become significantly more straightforward. Hierarchies and classifications are utilized to enhance data comprehension. The system automatically aligns data with the semantic model, enabling the integration of various data sources through a robust distributed SQL engine that supports large-scale querying. Data can be accessed as an interconnected semantic graph, improving performance while reducing computing expenses through an advanced caching engine and materialized views. Users gain from sophisticated query optimization techniques. Additionally, Timbr allows connectivity to a wide range of cloud services, data lakes, data warehouses, databases, and diverse file formats, ensuring a seamless experience with your data sources. When executing a query, Timbr not only optimizes it but also efficiently delegates the task to the backend for improved processing. This comprehensive approach ensures that users can work with their data more effectively and with greater agility.
  • 22
    Talend Data Fabric Reviews
    Talend Data Fabric's cloud services are able to efficiently solve all your integration and integrity problems -- on-premises or in cloud, from any source, at any endpoint. Trusted data delivered at the right time for every user. With an intuitive interface and minimal coding, you can easily and quickly integrate data, files, applications, events, and APIs from any source to any location. Integrate quality into data management to ensure compliance with all regulations. This is possible through a collaborative, pervasive, and cohesive approach towards data governance. High quality, reliable data is essential to make informed decisions. It must be derived from real-time and batch processing, and enhanced with market-leading data enrichment and cleaning tools. Make your data more valuable by making it accessible internally and externally. Building APIs is easy with the extensive self-service capabilities. This will improve customer engagement.
  • 23
    Daft Reviews
    Daft is an advanced framework designed for ETL, analytics, and machine learning/artificial intelligence at scale, providing an intuitive Python dataframe API that surpasses Spark in both performance and user-friendliness. It integrates seamlessly with your ML/AI infrastructure through efficient zero-copy connections to essential Python libraries like Pytorch and Ray, and it enables the allocation of GPUs for model execution. Operating on a lightweight multithreaded backend, Daft starts by running locally, but when the capabilities of your machine are exceeded, it effortlessly transitions to an out-of-core setup on a distributed cluster. Additionally, Daft supports User-Defined Functions (UDFs) in columns, enabling the execution of intricate expressions and operations on Python objects with the necessary flexibility for advanced ML/AI tasks. Its ability to scale and adapt makes it a versatile choice for data processing and analysis in various environments.
  • 24
    Subsalt Reviews
    Subsalt represents a groundbreaking platform specifically designed to facilitate the utilization of anonymous data on a large enterprise scale. Its advanced Query Engine intelligently balances the necessary trade-offs between maintaining data privacy and ensuring fidelity to original data. The result of queries is fully-synthetic information that retains row-level granularity and adheres to original data formats, thereby avoiding any disruptive transformations. Additionally, Subsalt guarantees compliance through third-party audits, aligning with HIPAA's Expert Determination standard. It accommodates various deployment models tailored to the distinct privacy and security needs of each client, ensuring versatility. With certifications for SOC2-Type 2 and HIPAA compliance, Subsalt has been architected to significantly reduce the risk of real data exposure or breaches. Furthermore, its seamless integration with existing data and machine learning tools through a Postgres-compatible SQL interface simplifies the adoption process for new users, enhancing overall operational efficiency. This innovative approach positions Subsalt as a leader in the realm of data privacy and synthetic data generation.
  • Previous
  • You're on page 1
  • Next