Best Data Management Software for AWS IoT

Find and compare the best Data Management software for AWS IoT in 2025

Use the comparison tool below to compare the top Data Management software for AWS IoT on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Rayven Reviews
    Rayven is a complete SaaS platform with no-, low-, and full-code capabilities, enabling rapid creation of AI tools, applications, and automations - without disrupting your current tech stack. - Start for free using AI prompts, visual builders, templates, or your own code to: - Quickly develop apps and automations from scratch or using ready-made templates - Integrate with existing systems, unify real-time data, and deploy AI across operations - Improve processes without removing or risking legacy technology - Align IT, ops, and product teams on a shared platform for faster delivery Rayven is built for technical and non-technical users alike, offering a single, cost-effective solution to go from idea to live deployment - fast.
  • 2
    DevicePilot Reviews
    IoT Service Monitoring Turn device data into action to optimize your service delivery Protect your revenue Customers will continue to pay you if your service is high quality. Save money Armed with a powerful tool, your employees will be more productive and provide better service using the same human resource. Your time should be spent in areas that will yield the highest return. Unlock growth You can press the "SCALE" button to deploy without worrying about whether you will fail. All the information you need to support your business decisions is at your fingertips.
  • 3
    Amazon DynamoDB Reviews
    Amazon DynamoDB is a versatile key-value and document database that provides exceptional single-digit millisecond performance, regardless of scale. As a fully managed service, it offers multi-region, multimaster durability along with integrated security features, backup and restore capabilities, and in-memory caching designed for internet-scale applications. With the ability to handle over 10 trillion requests daily and support peak loads exceeding 20 million requests per second, it serves a wide range of businesses. Prominent companies like Lyft, Airbnb, and Redfin, alongside major enterprises such as Samsung, Toyota, and Capital One, rely on DynamoDB for their critical operations, leveraging its scalability and performance. This allows organizations to concentrate on fostering innovation without the burden of operational management. You can create an immersive gaming platform that manages player data, session histories, and leaderboards for millions of users simultaneously. Additionally, it facilitates the implementation of design patterns for various applications like shopping carts, workflow engines, inventory management, and customer profiles. DynamoDB is well-equipped to handle high-traffic, large-scale events seamlessly, making it an ideal choice for modern applications.
  • 4
    Amazon OpenSearch Service Reviews
    Enhance your operational efficiency by leveraging a widely-used open-source solution managed by AWS. Implement auditing and data security measures with an architecture that includes built-in certifications for both data centers and networks. Proactively identify potential threats and respond to system conditions by utilizing machine learning, alert notifications, and visualization tools. Streamline your time and resources to focus on strategic initiatives. Gain secure access to real-time search capabilities, monitoring, and analysis of both business and operational data. Amazon OpenSearch Service simplifies the process of conducting interactive log analytics, monitoring applications in real-time, and enabling website search functionalities. As an open-source, distributed search and analytics suite that evolved from Elasticsearch, OpenSearch allows for extensive data exploration. Amazon OpenSearch Service provides users with the latest releases of OpenSearch, compatibility with 19 different versions of Elasticsearch (ranging from 1.5 to 7.10), and visualization features through OpenSearch dashboards and Kibana, ensuring a comprehensive toolkit for data management. This versatile service empowers organizations to harness data insights efficiently while maintaining a robust security posture.
  • 5
    Amazon Data Firehose Reviews

    Amazon Data Firehose

    Amazon

    $0.075 per month
    Effortlessly capture, modify, and transfer streaming data in real time. You can create a delivery stream, choose your desired destination, and begin streaming data with minimal effort. The system automatically provisions and scales necessary compute, memory, and network resources without the need for continuous management. You can convert raw streaming data into various formats such as Apache Parquet and dynamically partition it without the hassle of developing your processing pipelines. Amazon Data Firehose is the most straightforward method to obtain, transform, and dispatch data streams in mere seconds to data lakes, data warehouses, and analytics platforms. To utilize Amazon Data Firehose, simply establish a stream by specifying the source, destination, and any transformations needed. The service continuously processes your data stream, automatically adjusts its scale according to the data volume, and ensures delivery within seconds. You can either choose a source for your data stream or utilize the Firehose Direct PUT API to write data directly. This streamlined approach allows for greater efficiency and flexibility in handling data streams.
  • 6
    Amazon Kinesis Reviews
    Effortlessly gather, manage, and scrutinize video and data streams as they occur. Amazon Kinesis simplifies the process of collecting, processing, and analyzing streaming data in real-time, empowering you to gain insights promptly and respond swiftly to emerging information. It provides essential features that allow for cost-effective processing of streaming data at any scale while offering the adaptability to select the tools that best align with your application's needs. With Amazon Kinesis, you can capture real-time data like video, audio, application logs, website clickstreams, and IoT telemetry, facilitating machine learning, analytics, and various other applications. This service allows you to handle and analyze incoming data instantaneously, eliminating the need to wait for all data to be collected before starting the processing. Moreover, Amazon Kinesis allows for the ingestion, buffering, and real-time processing of streaming data, enabling you to extract insights in a matter of seconds or minutes, significantly reducing the time it takes compared to traditional methods. Overall, this capability revolutionizes how businesses can respond to data-driven opportunities as they arise.
  • 7
    Digital Twin Streaming Service Reviews
    ScaleOut Digital Twin Streaming Service™ allows for the seamless creation and deployment of real-time digital twins for advanced streaming analytics. With the ability to connect to numerous data sources such as Azure and AWS IoT hubs, Kafka, and others, it enhances situational awareness through live, aggregate analytics. This innovative cloud service is capable of tracking telemetry from millions of data sources simultaneously, offering immediate and in-depth insights with state-tracking and focused real-time feedback for a multitude of devices. The user-friendly interface streamlines deployment and showcases aggregate analytics in real time, which is essential for maximizing situational awareness. It is suitable for a diverse array of applications, including the Internet of Things (IoT), real-time monitoring, logistics, and financial services. The straightforward pricing structure facilitates a quick and easy start. When paired with the ScaleOut Digital Twin Builder software toolkit, the ScaleOut Digital Twin Streaming Service paves the way for the next generation of stream processing, empowering users to leverage data like never before. This combination not only enhances operational efficiency but also opens new avenues for innovation across various sectors.
  • 8
    StreamFlux Reviews
    Data plays an essential role in the process of establishing, optimizing, and expanding your enterprise. Nevertheless, fully harnessing the potential of data can prove difficult as many businesses encounter issues like limited data access, mismatched tools, escalating expenses, and delayed outcomes. In simple terms, those who can effectively convert unrefined data into actionable insights will excel in the current business environment. A crucial aspect of achieving this is enabling all team members to analyze, create, and collaborate on comprehensive AI and machine learning projects efficiently and within a unified platform. Streamflux serves as a comprehensive solution for addressing your data analytics and AI needs. Our user-friendly platform empowers you to construct complete data solutions, utilize models to tackle intricate inquiries, and evaluate user interactions. Whether your focus is on forecasting customer attrition, estimating future earnings, or crafting personalized recommendations, you can transform raw data into meaningful business results within days rather than months. By leveraging our platform, organizations can not only enhance efficiency but also foster a culture of data-driven decision-making.
  • 9
    PartiQL Reviews
    PartiQL extends SQL in a manner that is straightforward, allowing nested data to be treated as integral components and enabling a smooth integration with SQL itself. This capability facilitates intuitive operations such as filtering, joining, and aggregating various types of data, including structured, semistructured, and nested datasets. By decoupling the syntax and semantics of queries from the actual data format or storage system, PartiQL provides a cohesive querying experience across diverse data stores and formats. It empowers users to engage with data irrespective of the presence of a standard schema. Additionally, the components of PartiQL—including its syntax, semantics, embedded reference interpreter, command-line interface, testing framework, and associated tests—are distributed under the Apache License, version 2.0. This licensing grants users the freedom to use, modify, and share their contributions while adhering to their preferred terms. Thus, the overall design of PartiQL enhances accessibility and flexibility in data management across various platforms.
  • Previous
  • You're on page 1
  • Next