Best Data Management Software for Amazon Redshift - Page 7

Find and compare the best Data Management software for Amazon Redshift in 2025

Use the comparison tool below to compare the top Data Management software for Amazon Redshift on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Embeddable Reviews

    Embeddable

    Embeddable

    On request
    The toolkit to build interactive, fully customized analytics experiences into your apps. Embeddable believes that you shouldn't be forced to choose between buying or building your analytics solution. While creating charts, graphs and dashboards is an expensive, ongoing commitment, the out-of-the box solutions do not deliver the user experience that you desire for your clients. Welcome to the world of limitless creativity where you can create analytics experiences that are truly remarkable, and surpass your customers' expectations. Create your perfect experience using best-in class open source libraries. Embeddable displays data in your app using a secure read only transaction, regardless of whether your data is stored in a central data warehouse or distributed across multiple microservices. Let your imagination run wild and create the analytics solution you want, without compromising.
  • 2
    DataChannel Reviews

    DataChannel

    DataChannel

    $250 per month
    Consolidate information from over 100 sources to empower your team to provide enhanced insights swiftly. Integrate data from any data warehouse into the business tools preferred by your teams. Optimize your data operations efficiently through a singular platform uniquely designed to fulfill all the needs of your data teams, potentially reducing your expenses by as much as 75%. If you're looking to avoid the complexities of managing a data warehouse, our platform is the sole solution that provides an integrated managed data warehouse tailored to address all your data management requirements. Choose from an expanding collection of more than 100 fully managed connectors and over 20 destinations, including SaaS applications, databases, data warehouses, and beyond. Enjoy complete and secure control over the specific data you wish to transfer, while scheduling and transforming your data for analytics effortlessly, ensuring it remains in sync with your operational pipelines. Our platform not only simplifies data management but also enhances collaboration across teams, making it a valuable asset for any organization.
  • 3
    Chalk Reviews
    Experience robust data engineering processes free from the challenges of infrastructure management. By utilizing straightforward, modular Python, you can define intricate streaming, scheduling, and data backfill pipelines with ease. Transition from traditional ETL methods and access your data instantly, regardless of its complexity. Seamlessly blend deep learning and large language models with structured business datasets to enhance decision-making. Improve forecasting accuracy using up-to-date information, eliminate the costs associated with vendor data pre-fetching, and conduct timely queries for online predictions. Test your ideas in Jupyter notebooks before moving them to a live environment. Avoid discrepancies between training and serving data while developing new workflows in mere milliseconds. Monitor all of your data operations in real-time to effortlessly track usage and maintain data integrity. Have full visibility into everything you've processed and the ability to replay data as needed. Easily integrate with existing tools and deploy on your infrastructure, while setting and enforcing withdrawal limits with tailored hold periods. With such capabilities, you can not only enhance productivity but also ensure streamlined operations across your data ecosystem.
  • 4
    Foundational Reviews
    Detect and address code and optimization challenges in real-time, mitigate data incidents before deployment, and oversee data-affecting code modifications comprehensively—from the operational database to the user interface dashboard. With automated, column-level data lineage tracing the journey from the operational database to the reporting layer, every dependency is meticulously examined. Foundational automates the enforcement of data contracts by scrutinizing each repository in both upstream and downstream directions, directly from the source code. Leverage Foundational to proactively uncover code and data-related issues, prevent potential problems, and establish necessary controls and guardrails. Moreover, implementing Foundational can be achieved in mere minutes without necessitating any alterations to the existing codebase, making it an efficient solution for organizations. This streamlined setup promotes quicker response times to data governance challenges.
  • 5
    Onehouse Reviews
    Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization.
  • 6
    Brewit Reviews
    Accelerate your data-driven decision-making by tenfold with self-service analytics that seamlessly integrates your databases and data warehouses in a single platform, including options like Postgres, MySQL, Snowflake, and BigQuery. Brewit simplifies the process by generating SQL queries and suggesting charts based on your specific data inquiries, while also allowing in-depth analysis. Engage in a conversation with your database, visualize findings, and conduct thorough analyses. With a built-in data catalog, you can guarantee the accuracy and reliability of your answers. An automated semantic layer ensures that Brewit applies the correct business logic in its responses. Managing your data catalog and data dictionary is straightforward, and creating an attractive report is as simple as crafting a document. A narrative brings your data to life, and our Notion-style notebook editor lets you effortlessly compile reports and dashboards, transforming raw data into valuable insights. Furthermore, all organized data products are accessible to anyone with a data-related query, making it easy for users of all technical backgrounds to engage with the information. In this way, Brewit democratizes data accessibility and empowers all users to utilize insights effectively.
  • 7
    DataTrust Reviews
    DataTrust is designed to speed up testing phases and lower delivery costs by facilitating continuous integration and continuous deployment (CI/CD) of data. It provides a comprehensive suite for data observability, validation, and reconciliation at an extensive scale, all without the need for coding and with user-friendly features. Users can conduct comparisons, validate data, and perform reconciliations using reusable scenarios. The platform automates testing processes and sends alerts when problems occur. It includes interactive executive reports that deliver insights into quality dimensions, alongside personalized drill-down reports equipped with filters. Additionally, it allows for comparison of row counts at various schema levels across multiple tables and enables checksum data comparisons. The rapid generation of business rules through machine learning adds to its versatility, giving users the option to accept, modify, or discard rules as required. It also facilitates the reconciliation of data from multiple sources, providing a complete array of tools to analyze both source and target datasets effectively. Overall, DataTrust stands out as a powerful solution for enhancing data management practices across different organizations.
  • 8
    Orchestra Reviews
    Orchestra serves as a Comprehensive Control Platform for Data and AI Operations, aimed at empowering data teams to effortlessly create, deploy, and oversee workflows. This platform provides a declarative approach that merges coding with a graphical interface, enabling users to develop workflows at a tenfold speed while cutting maintenance efforts by half. Through its real-time metadata aggregation capabilities, Orchestra ensures complete data observability, facilitating proactive alerts and swift recovery from any pipeline issues. It smoothly integrates with a variety of tools such as dbt Core, dbt Cloud, Coalesce, Airbyte, Fivetran, Snowflake, BigQuery, Databricks, and others, ensuring it fits well within existing data infrastructures. With a modular design that accommodates AWS, Azure, and GCP, Orchestra proves to be a flexible option for businesses and growing organizations looking to optimize their data processes and foster confidence in their AI ventures. Additionally, its user-friendly interface and robust connectivity options make it an essential asset for organizations striving to harness the full potential of their data ecosystems.
  • 9
    OpenMetadata Reviews
    OpenMetadata serves as a comprehensive, open platform for unifying metadata, facilitating data discovery, observability, and governance through a single interface. By utilizing a Unified Metadata Graph alongside over 80 ready-to-use connectors, it aggregates metadata from various sources such as databases, pipelines, BI tools, and ML systems, thereby offering an extensive context for teams to effectively search, filter, and visualize assets throughout their organization. The platform is built on an API- and schema-first architecture, which provides flexible metadata entities and relationships, allowing organizations to tailor their metadata structure with precision. Comprising only four essential system components, OpenMetadata is crafted for straightforward installation and operation, ensuring scalable performance that empowers both technical and non-technical users to work together seamlessly on discovery, lineage tracking, quality assurance, observability, collaboration, and governance tasks without the need for intricate infrastructure. This versatility makes it an invaluable tool for organizations aiming to harness their data assets more effectively.
  • 10
    Codd AI Reviews

    Codd AI

    Codd AI

    $25k per year
    Codd AI addresses a major challenge in the analytics landscape: transforming data into a format that is genuinely suitable for business purposes. Rather than having teams dedicate weeks to the tedious tasks of manually mapping schemas, constructing models, and establishing metrics, Codd leverages generative AI to automatically generate a context-aware semantic layer that connects technical data with the language of the business. As a result, business users can pose inquiries in straightforward English and receive precise, governed responses instantly—whether through BI tools, conversational AI, or various other platforms. Additionally, with built-in governance and auditability, Codd not only accelerates the analytics process but also enhances clarity and reliability. Ultimately, this innovative approach empowers organizations to make more informed decisions based on trustworthy data insights.
  • 11
    Data Virtuality Reviews
    Connect and centralize data. Transform your data landscape into a flexible powerhouse. Data Virtuality is a data integration platform that allows for instant data access, data centralization, and data governance. Logical Data Warehouse combines materialization and virtualization to provide the best performance. For high data quality, governance, and speed-to-market, create your single source data truth by adding a virtual layer to your existing data environment. Hosted on-premises or in the cloud. Data Virtuality offers three modules: Pipes Professional, Pipes Professional, or Logical Data Warehouse. You can cut down on development time up to 80% Access any data in seconds and automate data workflows with SQL. Rapid BI Prototyping allows for a significantly faster time to market. Data quality is essential for consistent, accurate, and complete data. Metadata repositories can be used to improve master data management.
  • 12
    Mode Reviews

    Mode

    Mode Analytics

    Gain insights into user interactions with your product and pinpoint areas of opportunity to guide your product strategy. Mode enables a single Stitch analyst to accomplish what typically requires an entire data team by offering rapid, adaptable, and collaborative tools. Create dashboards that track annual revenue and utilize chart visualizations to quickly spot anomalies. Develop well-crafted reports suitable for investors or facilitate collaboration by sharing your analyses with different teams. Integrate your complete technology ecosystem with Mode to uncover upstream problems and enhance overall performance. Accelerate cross-team workflows using APIs and webhooks. By analyzing user engagement, you can discover opportunity areas that help refine your product decisions. Additionally, utilize insights from marketing and product data to address vulnerabilities in your sales funnel, optimize landing-page efficiency, and anticipate churn before it occurs, ensuring proactive measures are in place.
  • 13
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 14
    MessageGears Reviews
    Your modern data warehouse can be used to drive customer engagement and cross channel marketing. This opens up new opportunities for personalized, timely, and relevant messaging that produces real results. You should use all data, not just the ones you've copied to your cloud marketing. Reduce wasteful spending and send more messages across channels. MessageGears stores your data in the same format it is in, so you can get a full suite enterprise marketing tools at a fraction of the cost of a traditional marketing cloud. Segment by MessageGears combines the power and ease of a drag-and-drop segment creator with a segmentation engine that is as fast as your data warehouse. MessageGears Message lets you use any data available in any format to personalize messages for each customer at a scale other email marketing services can't.
  • 15
    Nucleon Database Master Reviews

    Nucleon Database Master

    Nucleon Software

    $99 one-time payment
    Nucleon Database Master is a contemporary and robust software tool designed for database querying, administration, and management, featuring a user-friendly interface that is both modern and consistent. It streamlines the tasks of managing, monitoring, querying, editing, visualizing, and designing both relational and NoSQL databases. Additionally, Database Master supports the execution of advanced SQL, JQL, and C# (Linq) query scripts, while also offering access to a comprehensive array of database objects, including tables, views, procedures, packages, columns, indexes, relationships (constraints), collections, triggers, and various other entities within the database ecosystem. This powerful software helps users enhance their productivity and efficiency in database management tasks.
  • 16
    ActionIQ Reviews
    The ActionIQ Customer Data Platform empowers organizations to synchronize their personnel, technology, and procedures to create outstanding customer interactions at every point of engagement. To distinguish genuine CDPs from mere impostors, access ActionIQ's comprehensive guide, which will help you avoid months of tedious research and uncover the realities of the complex CDP market. In the current experience-driven economy, consumers anticipate that brands will recognize them and consistently provide authentic, valuable interactions. The ActionIQ CDP is designed to help large enterprises tackle persistent issues of customer data fragmentation, equipping them with the insights necessary to coordinate experiences seamlessly across all brand interactions. By developing an interconnected “smart hub” that consolidates data, organizations can empower their teams with immediate insights. This deep understanding of customers facilitates the delivery of trustworthy and profitable experiences at scale, ultimately enhancing brand loyalty and customer satisfaction. Moreover, embracing such a platform can significantly enhance your organization’s ability to respond to evolving customer needs swiftly and effectively.
  • 17
    BDB Platform Reviews
    BDB is an advanced platform for data analytics and business intelligence that excels in extracting valuable insights from your data. It can be implemented both in cloud environments and on-premises. With a unique microservices architecture, it incorporates components for Data Preparation, Predictive Analytics, Pipelines, and Dashboard design, enabling tailored solutions and scalable analytics across various sectors. Thanks to its robust NLP-driven search functionality, users can harness the potential of data seamlessly across desktops, tablets, and mobile devices. BDB offers numerous integrated data connectors, allowing it to interface with a wide array of popular data sources, applications, third-party APIs, IoT devices, and social media platforms in real-time. It facilitates connections to relational databases, big data systems, FTP/SFTP servers, flat files, and web services, effectively managing structured, semi-structured, and unstructured data. Embark on your path to cutting-edge analytics today, and discover the transformative power of BDB for your organization.
  • 18
    Mage Sensitive Data Discovery Reviews
    Mage Sensitive Data Discovery module can help you uncover hidden data locations in your company. You can find data hidden in any type of data store, whether it is structured, unstructured or Big Data. Natural Language Processing and Artificial Intelligence can be used to find data in the most difficult of places. A patented approach to data discovery ensures efficient identification of sensitive data and minimal false positives. You can add data classifications to your existing 70+ data classifications that cover all popular PII/PHI data. A simplified discovery process allows you to schedule sample, full, and even incremental scans.
  • 19
    Trifacta Reviews
    Trifacta offers an efficient solution for preparing data and constructing data pipelines in the cloud. By leveraging visual and intelligent assistance, it enables users to expedite data preparation, leading to quicker insights. Data analytics projects can falter due to poor data quality; therefore, Trifacta equips you with the tools to comprehend and refine your data swiftly and accurately. It empowers users to harness the full potential of their data without the need for coding expertise. Traditional manual data preparation methods can be tedious and lack scalability, but with Trifacta, you can create, implement, and maintain self-service data pipelines in mere minutes instead of months, revolutionizing your data workflow. This ensures that your analytics projects are not only successful but also sustainable over time.
  • 20
    Appen Reviews
    Appen combines the intelligence of over one million people around the world with cutting-edge algorithms to create the best training data for your ML projects. Upload your data to our platform, and we will provide all the annotations and labels necessary to create ground truth for your models. An accurate annotation of data is essential for any AI/ML model to be trained. This is how your model will make the right judgments. Our platform combines human intelligence with cutting-edge models to annotation all types of raw data. This includes text, video, images, audio and video. It creates the exact ground truth for your models. Our user interface is easy to use, and you can also programmatically via our API.
  • 21
    Nightfall Reviews
    Uncover, categorize, and safeguard your sensitive information with Nightfall™, which leverages machine learning technology to detect essential business data, such as customer Personally Identifiable Information (PII), across your SaaS platforms, APIs, and data systems, enabling effective management and protection. With the ability to integrate quickly through APIs, you can monitor your data effortlessly without the need for agents. Nightfall’s machine learning capabilities ensure precise classification of sensitive data and PII, ensuring comprehensive coverage. You can set up automated processes for actions like quarantining, deleting, and alerting, which enhances efficiency and bolsters your business’s security. Nightfall seamlessly connects with all your SaaS applications and data infrastructure. Begin utilizing Nightfall’s APIs for free to achieve sensitive data classification and protection. Through the REST API, you can retrieve organized results from Nightfall’s advanced deep learning detectors, identifying elements such as credit card numbers and API keys, all with minimal coding. This allows for a smooth integration of data classification into your applications and workflows utilizing Nightfall's REST API, setting a foundation for robust data governance. By employing Nightfall, you not only protect your data but also empower your organization with enhanced compliance capabilities.
  • 22
    Azure Data Factory Reviews
    Combine data silos effortlessly using Azure Data Factory, a versatile service designed to meet diverse data integration requirements for users of all expertise levels. You can easily create both ETL and ELT workflows without any coding through its user-friendly visual interface, or opt to write custom code if you prefer. The platform supports the seamless integration of data sources with over 90 pre-built, hassle-free connectors, all at no extra cost. With a focus on your data, this serverless integration service manages everything else for you. Azure Data Factory serves as a robust layer for data integration and transformation, facilitating your digital transformation goals. Furthermore, it empowers independent software vendors (ISVs) to enhance their SaaS applications by incorporating integrated hybrid data, enabling them to provide more impactful, data-driven user experiences. By utilizing pre-built connectors and scalable integration capabilities, you can concentrate on enhancing user satisfaction while Azure Data Factory efficiently handles the backend processes, ultimately streamlining your data management efforts.
  • 23
    IBM Databand Reviews
    Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations.
  • 24
    ER/Studio Enterprise Team Edition Reviews
    ER/Studio Enterprise Team Edition allows data modelers and architects the ability to share data models and metadata throughout an enterprise. It offers a complete solution to enterprise architecture and data governance.
  • 25
    Tokern Reviews
    Tokern offers an open-source suite designed for data governance, specifically tailored for databases and data lakes. This user-friendly toolkit facilitates the collection, organization, and analysis of metadata from data lakes, allowing users to execute quick tasks via a command-line application or run it as a service for ongoing metadata collection. Users can delve into aspects like data lineage, access controls, and personally identifiable information (PII) datasets, utilizing reporting dashboards or Jupyter notebooks for programmatic analysis. As a comprehensive solution, Tokern aims to enhance your data's return on investment, ensure compliance with regulations such as HIPAA, CCPA, and GDPR, and safeguard sensitive information against insider threats seamlessly. It provides centralized management for metadata related to users, datasets, and jobs, which supports various other data governance functionalities. With the capability to track Column Level Data Lineage for platforms like Snowflake, AWS Redshift, and BigQuery, users can construct lineage from query histories or ETL scripts. Additionally, lineage exploration can be achieved through interactive graphs or programmatically via APIs or SDKs, offering a versatile approach to understanding data flow. Overall, Tokern empowers organizations to maintain robust data governance while navigating complex regulatory landscapes.