Best Data Lineage Tools for Apache Airflow

Find and compare the best Data Lineage tools for Apache Airflow in 2025

Use the comparison tool below to compare the top Data Lineage tools for Apache Airflow on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Sifflet Reviews
    Effortlessly monitor thousands of tables through machine learning-driven anomaly detection alongside a suite of over 50 tailored metrics. Ensure comprehensive oversight of both data and metadata while meticulously mapping all asset dependencies from ingestion to business intelligence. This solution enhances productivity and fosters collaboration between data engineers and consumers. Sifflet integrates smoothly with your existing data sources and tools, functioning on platforms like AWS, Google Cloud Platform, and Microsoft Azure. Maintain vigilance over your data's health and promptly notify your team when quality standards are not satisfied. With just a few clicks, you can establish essential coverage for all your tables. Additionally, you can customize the frequency of checks, their importance, and specific notifications simultaneously. Utilize machine learning-driven protocols to identify any data anomalies with no initial setup required. Every rule is supported by a unique model that adapts based on historical data and user input. You can also enhance automated processes by utilizing a library of over 50 templates applicable to any asset, thereby streamlining your monitoring efforts even further. This approach not only simplifies data management but also empowers teams to respond proactively to potential issues.
  • 2
    Microsoft Purview Reviews
    Microsoft Purview serves as a comprehensive data governance platform that facilitates the management and oversight of your data across on-premises, multicloud, and software-as-a-service (SaaS) environments. With its capabilities in automated data discovery, sensitive data classification, and complete data lineage tracking, you can effortlessly develop a thorough and current representation of your data ecosystem. This empowers data users to access reliable and valuable data easily. The service provides automated identification of data lineage and classification across various sources, ensuring a cohesive view of your data assets and their interconnections for enhanced governance. Through semantic search, users can discover data using both business and technical terminology, providing insights into the location and flow of sensitive information within a hybrid data environment. By leveraging the Purview Data Map, you can lay the groundwork for effective data utilization and governance, while also automating and managing metadata from diverse sources. Additionally, it supports the classification of data using both predefined and custom classifiers, along with Microsoft Information Protection sensitivity labels, ensuring that your data governance framework is robust and adaptable. This combination of features positions Microsoft Purview as an essential tool for organizations seeking to optimize their data management strategies.
  • 3
    Decube Reviews
    Decube is a comprehensive data management platform designed to help organizations manage their data observability, data catalog, and data governance needs. Our platform is designed to provide accurate, reliable, and timely data, enabling organizations to make better-informed decisions. Our data observability tools provide end-to-end visibility into data, making it easier for organizations to track data origin and flow across different systems and departments. With our real-time monitoring capabilities, organizations can detect data incidents quickly and reduce their impact on business operations. The data catalog component of our platform provides a centralized repository for all data assets, making it easier for organizations to manage and govern data usage and access. With our data classification tools, organizations can identify and manage sensitive data more effectively, ensuring compliance with data privacy regulations and policies. The data governance component of our platform provides robust access controls, enabling organizations to manage data access and usage effectively. Our tools also allow organizations to generate audit reports, track user activity, and demonstrate compliance with regulatory requirements.
  • 4
    Secoda Reviews

    Secoda

    Secoda

    $50 per user per month
    With Secoda AI enhancing your metadata, you can effortlessly obtain contextual search results spanning your tables, columns, dashboards, metrics, and queries. This innovative tool also assists in generating documentation and queries from your metadata, which can save your team countless hours that would otherwise be spent on tedious tasks and repetitive data requests. You can easily conduct searches across all columns, tables, dashboards, events, and metrics with just a few clicks. The AI-driven search functionality allows you to pose any question regarding your data and receive quick, relevant answers. By integrating data discovery seamlessly into your workflow through our API, you can perform bulk updates, label PII data, manage technical debt, create custom integrations, pinpoint underutilized resources, and much more. By eliminating manual errors, you can establish complete confidence in your knowledge repository, ensuring that your team has the most accurate and reliable information at their fingertips. This transformative approach not only enhances productivity but also fosters a more informed decision-making process throughout your organization.
  • 5
    Datakin Reviews

    Datakin

    Datakin

    $2 per month
    Uncover the hidden order within your intricate data landscape and consistently know where to seek solutions. Datakin seamlessly tracks data lineage, presenting your entire data ecosystem through an engaging visual graph. This visualization effectively highlights the upstream and downstream connections associated with each dataset. The Duration tab provides an overview of a job’s performance in a Gantt-style chart, complemented by its upstream dependencies, which simplifies the identification of potential bottlenecks. When it's essential to determine the precise moment a breaking change occurs, the Compare tab allows you to observe how your jobs and datasets have evolved between different runs. Occasionally, jobs that complete successfully may yield poor output. The Quality tab reveals crucial data quality metrics and their fluctuations over time, making anomalies starkly apparent. By facilitating the swift identification of root causes for issues, Datakin also plays a vital role in preventing future complications from arising. This proactive approach ensures that your data remains reliable and efficient in supporting your business needs.
  • 6
    Foundational Reviews
    Detect and address code and optimization challenges in real-time, mitigate data incidents before deployment, and oversee data-affecting code modifications comprehensively—from the operational database to the user interface dashboard. With automated, column-level data lineage tracing the journey from the operational database to the reporting layer, every dependency is meticulously examined. Foundational automates the enforcement of data contracts by scrutinizing each repository in both upstream and downstream directions, directly from the source code. Leverage Foundational to proactively uncover code and data-related issues, prevent potential problems, and establish necessary controls and guardrails. Moreover, implementing Foundational can be achieved in mere minutes without necessitating any alterations to the existing codebase, making it an efficient solution for organizations. This streamlined setup promotes quicker response times to data governance challenges.
  • 7
    IBM Databand Reviews
    Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations.
  • Previous
  • You're on page 1
  • Next