Best Data Lineage Tools for Amazon Web Services (AWS)

Find and compare the best Data Lineage tools for Amazon Web Services (AWS) in 2025

Use the comparison tool below to compare the top Data Lineage tools for Amazon Web Services (AWS) on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    OvalEdge Reviews

    OvalEdge

    OvalEdge

    $1,300/month
    1 Rating
    OvalEdge, a cost-effective data catalogue, is designed to provide end-to-end data governance and privacy compliance. It also provides fast, reliable analytics. OvalEdge crawls the databases, BI platforms and data lakes of your organization to create an easy-to use, smart inventory. Analysts can quickly discover data and provide powerful insights using OvalEdge. OvalEdge's extensive functionality allows users to improve data access, data literacy and data quality.
  • 2
    erwin Data Intelligence Reviews

    erwin Data Intelligence

    Quest Software

    $299 per month
    Erwin Data Intelligence (erwin DI) integrates data cataloging and data literacy functions to enhance awareness and accessibility of data assets while providing guidance for their usage and establishing safeguards to uphold data policies and best practices. It automatically gathers, transforms, and compiles metadata from a diverse range of data sources, business applications, operational processes, and data models into a centralized catalog. This catalog is then rendered accessible and comprehensible through role-specific, contextual views, empowering stakeholders to make informed strategic decisions based on reliable insights. Furthermore, erwin DI promotes enterprise data governance and supports digital transformation initiatives, alongside any endeavors that depend on data for successful results. It allows for the scheduling of regular metadata scans from a wide variety of data sources, simplifying the mapping of data elements from their origin to their destination, including data in transit, while facilitating seamless data integration across different platforms. In addition, it enables data consumers to identify and explore data that is pertinent to their specific roles, thereby enhancing overall data engagement within the organization. Ultimately, erwin DI serves as a powerful tool for maximizing the value derived from data assets.
  • 3
    Ataccama ONE Reviews
    Ataccama is a revolutionary way to manage data and create enterprise value. Ataccama unifies Data Governance, Data Quality and Master Data Management into one AI-powered fabric that can be used in hybrid and cloud environments. This gives your business and data teams unprecedented speed and security while ensuring trust, security and governance of your data.
  • 4
    Axon Data Governance Reviews
    For your teams to make informed, data-driven choices, they require reliable and consistent information. Achieve this through the implementation of integrated, automated, and intelligent data governance on a large scale. Axon Data Governance serves as the central hub for collaboration and a data marketplace essential for effective and scalable governance initiatives. It allows for easy identification of stakeholders and promotes knowledge sharing across different communities, enabling teams to learn from one another. By establishing a well-curated data marketplace, teams can swiftly locate, access, and comprehend the data necessary to derive analytical insights. Leveraging governed data can enhance critical projects, such as elevating customer experiences, while ensuring that your organization produces reliable and consistent outcomes. Incorporating governance and data privacy considerations into your projects and processes from the outset is crucial for complying with regulations like GDPR and CCPA. Moreover, creating a unified data dictionary will ensure that business context remains consistent across various tools, fostering better collaboration and understanding among team members. This systematic approach not only streamlines data management but also enhances overall organizational efficiency.
  • 5
    PHEMI Health DataLab Reviews
    Unlike most data management systems, PHEMI Health DataLab is built with Privacy-by-Design principles, not as an add-on. This means privacy and data governance are built-in from the ground up, providing you with distinct advantages: Lets analysts work with data without breaching privacy guidelines Includes a comprehensive, extensible library of de-identification algorithms to hide, mask, truncate, group, and anonymize data. Creates dataset-specific or system-wide pseudonyms enabling linking and sharing of data without risking data leakage. Collects audit logs concerning not only what changes were made to the PHEMI system, but also data access patterns. Automatically generates human and machine-readable de- identification reports to meet your enterprise governance risk and compliance guidelines. Rather than a policy per data access point, PHEMI gives you the advantage of one central policy for all access patterns, whether Spark, ODBC, REST, export, and more
  • 6
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 7
    IBM Databand Reviews
    Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations.
  • 8
    Kylo Reviews
    Kylo serves as an open-source platform designed for effective management of enterprise-level data lakes, facilitating self-service data ingestion and preparation while also incorporating robust metadata management, governance, security, and best practices derived from Think Big's extensive experience with over 150 big data implementation projects. It allows users to perform self-service data ingestion complemented by features for data cleansing, validation, and automatic profiling. Users can manipulate data effortlessly using visual SQL and an interactive transformation interface that is easy to navigate. The platform enables users to search and explore both data and metadata, examine data lineage, and access profiling statistics. Additionally, it provides tools to monitor the health of data feeds and services within the data lake, allowing users to track service level agreements (SLAs) and address performance issues effectively. Users can also create batch or streaming pipeline templates using Apache NiFi and register them with Kylo, thereby empowering self-service capabilities. Despite organizations investing substantial engineering resources to transfer data into Hadoop, they often face challenges in maintaining governance and ensuring data quality, but Kylo significantly eases the data ingestion process by allowing data owners to take control through its intuitive guided user interface. This innovative approach not only enhances operational efficiency but also fosters a culture of data ownership within organizations.
  • 9
    Tokern Reviews
    Tokern offers an open-source suite designed for data governance, specifically tailored for databases and data lakes. This user-friendly toolkit facilitates the collection, organization, and analysis of metadata from data lakes, allowing users to execute quick tasks via a command-line application or run it as a service for ongoing metadata collection. Users can delve into aspects like data lineage, access controls, and personally identifiable information (PII) datasets, utilizing reporting dashboards or Jupyter notebooks for programmatic analysis. As a comprehensive solution, Tokern aims to enhance your data's return on investment, ensure compliance with regulations such as HIPAA, CCPA, and GDPR, and safeguard sensitive information against insider threats seamlessly. It provides centralized management for metadata related to users, datasets, and jobs, which supports various other data governance functionalities. With the capability to track Column Level Data Lineage for platforms like Snowflake, AWS Redshift, and BigQuery, users can construct lineage from query histories or ETL scripts. Additionally, lineage exploration can be achieved through interactive graphs or programmatically via APIs or SDKs, offering a versatile approach to understanding data flow. Overall, Tokern empowers organizations to maintain robust data governance while navigating complex regulatory landscapes.
  • 10
    Apache Atlas Reviews

    Apache Atlas

    Apache Software Foundation

    Atlas serves as a versatile and scalable suite of essential governance services, empowering organizations to efficiently comply with regulations within the Hadoop ecosystem while facilitating integration across the enterprise's data landscape. Apache Atlas offers comprehensive metadata management and governance tools that assist businesses in creating a detailed catalog of their data assets, effectively classifying and managing these assets, and fostering collaboration among data scientists, analysts, and governance teams. It comes equipped with pre-defined types for a variety of both Hadoop and non-Hadoop metadata, alongside the capability to establish new metadata types tailored to specific needs. These types can incorporate primitive attributes, complex attributes, and object references, and they can also inherit characteristics from other types. Entities, which are instances of these types, encapsulate the specifics of metadata objects and their interconnections. Additionally, REST APIs enable seamless interaction with types and instances, promoting easier integration and enhancing overall functionality. This robust framework not only streamlines governance processes but also supports a culture of data-driven collaboration across the organization.
  • 11
    Privacera Reviews
    Multi-cloud data security with a single pane of glass Industry's first SaaS access governance solution. Cloud is fragmented and data is scattered across different systems. Sensitive data is difficult to access and control due to limited visibility. Complex data onboarding hinders data scientist productivity. Data governance across services can be manual and fragmented. It can be time-consuming to securely move data to the cloud. Maximize visibility and assess the risk of sensitive data distributed across multiple cloud service providers. One system that enables you to manage multiple cloud services' data policies in a single place. Support RTBF, GDPR and other compliance requests across multiple cloud service providers. Securely move data to the cloud and enable Apache Ranger compliance policies. It is easier and quicker to transform sensitive data across multiple cloud databases and analytical platforms using one integrated system.
  • 12
    Secuvy AI Reviews
    Secuvy, a next-generation cloud platform, automates data security, privacy compliance, and governance via AI-driven workflows. Unstructured data is treated with the best data intelligence. Secuvy, a next-generation cloud platform that automates data security, privacy compliance, and governance via AI-driven workflows is called Secuvy. Unstructured data is treated with the best data intelligence. Automated data discovery, customizable subjects access requests, user validations and data maps & workflows to comply with privacy regulations such as the ccpa or gdpr. Data intelligence is used to locate sensitive and private information in multiple data stores, both in motion and at rest. Our mission is to assist organizations in protecting their brand, automating processes, and improving customer trust in a world that is rapidly changing. We want to reduce human effort, costs and errors in handling sensitive data.
  • 13
    Talend Data Catalog Reviews
    Talend Data Catalog provides your organization with a single point of control for all your data. Data Catalog provides robust tools for search, discovery, and connectors that allow you to extract metadata from almost any data source. It makes it easy to manage your data pipelines, protect your data, and accelerate your ETL process. Data Catalog automatically crawls, profiles and links all your metadata. Data Catalog automatically documents up to 80% of the data associated with it. Smart relationships and machine learning keep the data current and up-to-date, ensuring that the user has the most recent data. Data governance can be made a team sport by providing a single point of control that allows you to collaborate to improve data accessibility and accuracy. With intelligent data lineage tracking and compliance tracking, you can support data privacy and regulatory compliance.
  • Previous
  • You're on page 1
  • Next