Best Data Lake Solutions for Hadoop

Find and compare the best Data Lake solutions for Hadoop in 2025

Use the comparison tool below to compare the top Data Lake solutions for Hadoop on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    AnalyticsCreator Reviews
    Top Pick See Solution
    Learn More
    Streamline your management of contemporary data lakes with the advanced automation capabilities of AnalyticsCreator. This solution allows for quicker processing of a variety of data types, including structured, semi-structured, and unstructured formats, enhancing data uniformity across different systems and providing deeper insights into data movement. Create SQL code tailored for platforms such as MS Fabric, AWS S3, Azure Data Lake Storage, and Google Cloud Storage to accelerate your development timelines. Benefit from automated lineage tracking and visualization that offers clarity on data flow and dependencies, leading to improved oversight of your data ecosystem.
  • 2
    ELCA Smart Data Lake Builder Reviews
    Traditional Data Lakes frequently simplify their role to merely serving as inexpensive raw data repositories, overlooking crucial elements such as data transformation, quality assurance, and security protocols. Consequently, data scientists often find themselves dedicating as much as 80% of their time to the processes of data acquisition, comprehension, and cleansing, which delays their ability to leverage their primary skills effectively. Furthermore, the establishment of traditional Data Lakes tends to occur in isolation by various departments, each utilizing different standards and tools, complicating the implementation of cohesive analytical initiatives. In contrast, Smart Data Lakes address these challenges by offering both architectural and methodological frameworks, alongside a robust toolset designed to create a high-quality data infrastructure. Essential to any contemporary analytics platform, Smart Data Lakes facilitate seamless integration with popular Data Science tools and open-source technologies, including those used for artificial intelligence and machine learning applications. Their cost-effective and scalable storage solutions accommodate a wide range of data types, including unstructured data and intricate data models, thereby enhancing overall analytical capabilities. This adaptability not only streamlines operations but also fosters collaboration across different departments, ultimately leading to more informed decision-making.
  • 3
    Scalytics Connect Reviews
    Scalytics Connect combines data mesh and in-situ data processing with polystore technology, resulting in increased data scalability, increased data processing speed, and multiplying data analytics capabilities without losing privacy or security. You take advantage of all your data without wasting time with data copy or movement, enable innovation with enhanced data analytics, generative AI and federated learning (FL) developments. Scalytics Connect enables any organization to directly apply data analytics, train machine learning (ML) or generative AI (LLM) models on their installed data architecture.
  • 4
    Huawei Cloud Data Lake Governance Center Reviews
    Transform your big data processes and create intelligent knowledge repositories with the Data Lake Governance Center (DGC), a comprehensive platform for managing all facets of data lake operations, including design, development, integration, quality, and asset management. With its intuitive visual interface, you can establish a robust data lake governance framework that enhances the efficiency of your data lifecycle management. Leverage analytics and metrics to uphold strong governance throughout your organization, while also defining and tracking data standards with the ability to receive real-time alerts. Accelerate the development of data lakes by easily configuring data integrations, models, and cleansing protocols to facilitate the identification of trustworthy data sources. Enhance the overall business value derived from your data assets. DGC enables the creation of tailored solutions for various applications, such as smart government, smart taxation, and smart campuses, while providing valuable insights into sensitive information across your organization. Additionally, DGC empowers businesses to establish comprehensive catalogs, classifications, and terminologies for their data. This holistic approach ensures that data governance is not just a task, but a core aspect of your enterprise's strategy.
  • 5
    IBM watsonx.data Reviews
    Leverage your data, regardless of its location, with an open and hybrid data lakehouse designed specifically for AI and analytics. Seamlessly integrate data from various sources and formats, all accessible through a unified entry point featuring a shared metadata layer. Enhance both cost efficiency and performance by aligning specific workloads with the most suitable query engines. Accelerate the discovery of generative AI insights with integrated natural-language semantic search, eliminating the need for SQL queries. Ensure that your AI applications are built on trusted data to enhance their relevance and accuracy. Maximize the potential of all your data, wherever it exists. Combining the rapidity of a data warehouse with the adaptability of a data lake, watsonx.data is engineered to facilitate the expansion of AI and analytics capabilities throughout your organization. Select the most appropriate engines tailored to your workloads to optimize your strategy. Enjoy the flexibility to manage expenses, performance, and features with access to an array of open engines, such as Presto, Presto C++, Spark Milvus, and many others, ensuring that your tools align perfectly with your data needs. This comprehensive approach allows for innovative solutions that can drive your business forward.
  • 6
    Kylo Reviews
    Kylo serves as an open-source platform designed for effective management of enterprise-level data lakes, facilitating self-service data ingestion and preparation while also incorporating robust metadata management, governance, security, and best practices derived from Think Big's extensive experience with over 150 big data implementation projects. It allows users to perform self-service data ingestion complemented by features for data cleansing, validation, and automatic profiling. Users can manipulate data effortlessly using visual SQL and an interactive transformation interface that is easy to navigate. The platform enables users to search and explore both data and metadata, examine data lineage, and access profiling statistics. Additionally, it provides tools to monitor the health of data feeds and services within the data lake, allowing users to track service level agreements (SLAs) and address performance issues effectively. Users can also create batch or streaming pipeline templates using Apache NiFi and register them with Kylo, thereby empowering self-service capabilities. Despite organizations investing substantial engineering resources to transfer data into Hadoop, they often face challenges in maintaining governance and ensuring data quality, but Kylo significantly eases the data ingestion process by allowing data owners to take control through its intuitive guided user interface. This innovative approach not only enhances operational efficiency but also fosters a culture of data ownership within organizations.
  • 7
    Datametica Reviews
    At Datametica, our innovative solutions significantly reduce risks and alleviate costs, time, frustration, and anxiety throughout the data warehouse migration process to the cloud. We facilitate the transition of your current data warehouse, data lake, ETL, and enterprise business intelligence systems to your preferred cloud environment through our automated product suite. Our approach involves crafting a comprehensive migration strategy that includes workload discovery, assessment, planning, and cloud optimization. With our Eagle tool, we provide insights from the initial discovery and assessment phases of your existing data warehouse to the development of a tailored migration strategy, detailing what data needs to be moved, the optimal sequence for migration, and the anticipated timelines and expenses. This thorough overview of workloads and planning not only minimizes migration risks but also ensures that business operations remain unaffected during the transition. Furthermore, our commitment to a seamless migration process helps organizations embrace cloud technologies with confidence and clarity.
  • 8
    Talend Data Fabric Reviews
    Talend Data Fabric's cloud services are able to efficiently solve all your integration and integrity problems -- on-premises or in cloud, from any source, at any endpoint. Trusted data delivered at the right time for every user. With an intuitive interface and minimal coding, you can easily and quickly integrate data, files, applications, events, and APIs from any source to any location. Integrate quality into data management to ensure compliance with all regulations. This is possible through a collaborative, pervasive, and cohesive approach towards data governance. High quality, reliable data is essential to make informed decisions. It must be derived from real-time and batch processing, and enhanced with market-leading data enrichment and cleaning tools. Make your data more valuable by making it accessible internally and externally. Building APIs is easy with the extensive self-service capabilities. This will improve customer engagement.
  • Previous
  • You're on page 1
  • Next