Best Data Lake Solutions for Databricks Data Intelligence Platform

Find and compare the best Data Lake solutions for Databricks Data Intelligence Platform in 2025

Use the comparison tool below to compare the top Data Lake solutions for Databricks Data Intelligence Platform on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Scalytics Connect Reviews
    Scalytics Connect combines data mesh and in-situ data processing with polystore technology, resulting in increased data scalability, increased data processing speed, and multiplying data analytics capabilities without losing privacy or security. You take advantage of all your data without wasting time with data copy or movement, enable innovation with enhanced data analytics, generative AI and federated learning (FL) developments. Scalytics Connect enables any organization to directly apply data analytics, train machine learning (ML) or generative AI (LLM) models on their installed data architecture.
  • 2
    Lyftrondata Reviews
    If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy.
  • 3
    Qlik Data Integration Reviews
    The Qlik Data Integration platform designed for managed data lakes streamlines the delivery of consistently updated, reliable, and trusted data sets for business analytics purposes. Data engineers enjoy the flexibility to swiftly incorporate new data sources, ensuring effective management at every stage of the data lake pipeline, which includes real-time data ingestion, refinement, provisioning, and governance. It serves as an intuitive and comprehensive solution for the ongoing ingestion of enterprise data into widely-used data lakes in real-time. Employing a model-driven strategy, it facilitates the rapid design, construction, and management of data lakes, whether on-premises or in the cloud. Furthermore, it provides a sophisticated enterprise-scale data catalog that enables secure sharing of all derived data sets with business users, thereby enhancing collaboration and data-driven decision-making across the organization. This comprehensive approach not only optimizes data management but also empowers users by making valuable insights readily accessible.
  • 4
    Onehouse Reviews
    Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization.
  • 5
    Delta Lake Reviews
    Delta Lake serves as an open-source storage layer that integrates ACID transactions into Apache Sparkā„¢ and big data operations. In typical data lakes, multiple pipelines operate simultaneously to read and write data, which often forces data engineers to engage in a complex and time-consuming effort to maintain data integrity because transactional capabilities are absent. By incorporating ACID transactions, Delta Lake enhances data lakes and ensures a high level of consistency with its serializability feature, the most robust isolation level available. For further insights, refer to Diving into Delta Lake: Unpacking the Transaction Log. In the realm of big data, even metadata can reach substantial sizes, and Delta Lake manages metadata with the same significance as the actual data, utilizing Spark's distributed processing strengths for efficient handling. Consequently, Delta Lake is capable of managing massive tables that can scale to petabytes, containing billions of partitions and files without difficulty. Additionally, Delta Lake offers data snapshots, which allow developers to retrieve and revert to previous data versions, facilitating audits, rollbacks, or the replication of experiments while ensuring data reliability and consistency across the board.
  • Previous
  • You're on page 1
  • Next