Best Data Fabric Software for Databricks Data Intelligence Platform

Find and compare the best Data Fabric software for Databricks Data Intelligence Platform in 2025

Use the comparison tool below to compare the top Data Fabric software for Databricks Data Intelligence Platform on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    DataBahn Reviews
    See Software
    Learn More
    DataBahn is an advanced platform that harnesses the power of AI to manage data pipelines and enhance security, streamlining the processes of data collection, integration, and optimization from a variety of sources to various destinations. Boasting a robust array of over 400 connectors, it simplifies the onboarding process and boosts the efficiency of data flow significantly. The platform automates data collection and ingestion, allowing for smooth integration, even when dealing with disparate security tools. Moreover, it optimizes costs related to SIEM and data storage through intelligent, rule-based filtering, which directs less critical data to more affordable storage options. It also ensures real-time visibility and insights by utilizing telemetry health alerts and implementing failover handling, which guarantees the integrity and completeness of data collection. Comprehensive data governance is further supported by AI-driven tagging, automated quarantining of sensitive information, and mechanisms in place to prevent vendor lock-in. In addition, DataBahn's adaptability allows organizations to stay agile and responsive to evolving data management needs.
  • 2
    Gathr.ai Reviews
    Top Pick
    Gathr is a Data+AI fabric, helping enterprises rapidly deliver production-ready data and AI products. Data+AI fabric enables teams to effortlessly acquire, process, and harness data, leverage AI services to generate intelligence, and build consumer applications— all with unparalleled speed, scale, and confidence. Gathr’s self-service, AI-assisted, and collaborative approach enables data and AI leaders to achieve massive productivity gains by empowering their existing teams to deliver more valuable work in less time. With complete ownership and control over data and AI, flexibility and agility to experiment and innovate on an ongoing basis, and proven reliable performance at real-world scale, Gathr allows them to confidently accelerate POVs to production. Additionally, Gathr supports both cloud and air-gapped deployments, making it the ideal choice for diverse enterprise needs. Gathr, recognized by leading analysts like Gartner and Forrester, is a go-to-partner for Fortune 500 companies, such as United, Kroger, Philips, Truist, and many others.
  • 3
    Dagster Reviews

    Dagster

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 4
    Querona Reviews
    We make BI and Big Data analytics easier and more efficient. Our goal is to empower business users, make BI specialists and always-busy business more independent when solving data-driven business problems. Querona is a solution for those who have ever been frustrated by a lack in data, slow or tedious report generation, or a long queue to their BI specialist. Querona has a built-in Big Data engine that can handle increasing data volumes. Repeatable queries can be stored and calculated in advance. Querona automatically suggests improvements to queries, making optimization easier. Querona empowers data scientists and business analysts by giving them self-service. They can quickly create and prototype data models, add data sources, optimize queries, and dig into raw data. It is possible to use less IT. Users can now access live data regardless of where it is stored. Querona can cache data if databases are too busy to query live.
  • Previous
  • You're on page 1
  • Next