Best Data Engineering Tools for Microsoft Power BI

Find and compare the best Data Engineering tools for Microsoft Power BI in 2025

Use the comparison tool below to compare the top Data Engineering tools for Microsoft Power BI on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    AnalyticsCreator Reviews
    See Tool
    Learn More
    Optimize your data engineering processes with AnalyticsCreator by automating the creation and implementation of resilient data pipelines tailored for databases, data warehouses, data lakes, and cloud platforms. Swift deployment of these pipelines guarantees smooth integration throughout your ecosystem, fostering innovation through contemporary engineering approaches. Easily connect a diverse array of data sources and destinations, ensuring fluid connectivity within your environment. Enhance your development cycles with features like automated documentation, lineage tracking, and schema evolution. Embrace modern engineering practices, including CI/CD and agile methodologies, to boost collaboration and drive innovation among teams.
  • 2
    Sifflet Reviews
    Effortlessly monitor thousands of tables through machine learning-driven anomaly detection alongside a suite of over 50 tailored metrics. Ensure comprehensive oversight of both data and metadata while meticulously mapping all asset dependencies from ingestion to business intelligence. This solution enhances productivity and fosters collaboration between data engineers and consumers. Sifflet integrates smoothly with your existing data sources and tools, functioning on platforms like AWS, Google Cloud Platform, and Microsoft Azure. Maintain vigilance over your data's health and promptly notify your team when quality standards are not satisfied. With just a few clicks, you can establish essential coverage for all your tables. Additionally, you can customize the frequency of checks, their importance, and specific notifications simultaneously. Utilize machine learning-driven protocols to identify any data anomalies with no initial setup required. Every rule is supported by a unique model that adapts based on historical data and user input. You can also enhance automated processes by utilizing a library of over 50 templates applicable to any asset, thereby streamlining your monitoring efforts even further. This approach not only simplifies data management but also empowers teams to respond proactively to potential issues.
  • 3
    Microsoft Fabric Reviews

    Microsoft Fabric

    Microsoft

    $156.334/month/2CU
    Connecting every data source with analytics services on a single AI-powered platform will transform how people access, manage, and act on data and insights. All your data. All your teams. All your teams in one place. Create an open, lake-centric hub to help data engineers connect data from various sources and curate it. This will eliminate sprawl and create custom views for all. Accelerate analysis through the development of AI models without moving data. This reduces the time needed by data scientists to deliver value. Microsoft Teams, Microsoft Excel, and Microsoft Teams are all great tools to help your team innovate faster. Connect people and data responsibly with an open, scalable solution. This solution gives data stewards more control, thanks to its built-in security, compliance, and governance.
  • 4
    Datameer Reviews
    Datameer is your go-to data tool for exploring, preparing, visualizing, and cataloging Snowflake insights. From exploring raw datasets to driving business decisions – an all-in-one tool.
  • 5
    Ascend Reviews

    Ascend

    Ascend

    $0.98 per DFC
    Ascend provides data teams with a streamlined and automated platform that allows them to ingest, transform, and orchestrate their entire data engineering and analytics workloads at an unprecedented speed, achieving results ten times faster than before. This tool empowers teams that are often hindered by bottlenecks to effectively build, manage, and enhance the ever-growing volume of data workloads they face. With the support of DataAware intelligence, Ascend operates continuously in the background to ensure data integrity and optimize data workloads, significantly cutting down maintenance time by as much as 90%. Users can effortlessly create, refine, and execute data transformations through Ascend’s versatile flex-code interface, which supports the use of multiple programming languages such as SQL, Python, Java, and Scala interchangeably. Additionally, users can quickly access critical metrics including data lineage, data profiles, job and user logs, and system health indicators all in one view. Ascend also offers native connections to a continually expanding array of common data sources through its Flex-Code data connectors, ensuring seamless integration. This comprehensive approach not only enhances efficiency but also fosters stronger collaboration among data teams.
  • 6
    Numbers Station Reviews
    Speeding up the process of gaining insights and removing obstacles for data analysts is crucial. With the help of intelligent automation in the data stack, you can extract insights from your data much faster—up to ten times quicker—thanks to AI innovations. Originally developed at Stanford's AI lab, this cutting-edge intelligence for today’s data stack is now accessible for your organization. You can leverage natural language to derive value from your disorganized, intricate, and isolated data within just minutes. Simply instruct your data on what you want to achieve, and it will promptly produce the necessary code for execution. This automation is highly customizable, tailored to the unique complexities of your organization rather than relying on generic templates. It empowers individuals to securely automate data-heavy workflows on the modern data stack, alleviating the burden on data engineers from a never-ending queue of requests. Experience the ability to reach insights in mere minutes instead of waiting months, with solutions that are specifically crafted and optimized for your organization’s requirements. Moreover, it integrates seamlessly with various upstream and downstream tools such as Snowflake, Databricks, Redshift, and BigQuery, all while being built on dbt, ensuring a comprehensive approach to data management. This innovative solution not only enhances efficiency but also promotes a culture of data-driven decision-making across all levels of your enterprise.
  • 7
    Molecula Reviews
    Molecula serves as an enterprise feature store that streamlines, enhances, and manages big data access to facilitate large-scale analytics and artificial intelligence. By consistently extracting features, minimizing data dimensionality at the source, and channeling real-time feature updates into a centralized repository, it allows for millisecond-level queries, computations, and feature re-utilization across various formats and locations without the need to duplicate or transfer raw data. This feature store grants data engineers, scientists, and application developers a unified access point, enabling them to transition from merely reporting and interpreting human-scale data to actively forecasting and recommending immediate business outcomes using comprehensive data sets. Organizations often incur substantial costs when preparing, consolidating, and creating multiple copies of their data for different projects, which delays their decision-making processes. Molecula introduces a groundbreaking approach for continuous, real-time data analysis that can be leveraged for all mission-critical applications, dramatically improving efficiency and effectiveness in data utilization. This transformation empowers businesses to make informed decisions swiftly and accurately, ensuring they remain competitive in an ever-evolving landscape.
  • 8
    Datactics Reviews
    Utilize the drag-and-drop rules studio to profile, cleanse, match, and eliminate duplicate data effortlessly. The no-code user interface enables subject matter experts to harness the tool without needing programming skills, empowering them to manage data effectively. By integrating AI and machine learning into your current data management workflows, you can minimize manual tasks and enhance accuracy, while ensuring complete transparency on automated decisions through a human-in-the-loop approach. Our award-winning data quality and matching features cater to various industries, and our self-service solutions can be configured quickly, often within weeks, with the support of specialized Datactics engineers. With Datactics, you can efficiently assess data against regulatory and industry standards, remedy breaches in bulk, and seamlessly integrate with reporting tools, all while providing comprehensive visibility and an audit trail for Chief Risk Officers. Furthermore, enhance your data matching capabilities by incorporating them into Legal Entity Masters to support Client Lifecycle Management, ensuring a robust and compliant data strategy. This comprehensive approach not only streamlines operations but also fosters informed decision-making across your organization.
  • 9
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • Previous
  • You're on page 1
  • Next