Best Data Engineering Tools for Google Cloud Platform

Find and compare the best Data Engineering tools for Google Cloud Platform in 2025

Use the comparison tool below to compare the top Data Engineering tools for Google Cloud Platform on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud BigQuery Reviews

    Google Cloud BigQuery

    Google

    Free ($300 in free credits)
    1,851 Ratings
    See Tool
    Learn More
    BigQuery serves as a vital resource for data engineers, facilitating a more efficient approach to data ingestion, transformation, and analysis. Its scalable architecture and comprehensive set of data engineering functionalities empower users to construct data pipelines and automate their workflows seamlessly. The platform's compatibility with various Google Cloud services enhances its adaptability for a wide range of data engineering activities. New users can benefit from $300 in complimentary credits, granting them the opportunity to delve into BigQuery’s offerings and optimize their data workflows for enhanced productivity and performance. This empowers engineers to dedicate more time to creative solutions while minimizing the complexities of infrastructure management.
  • 2
    DataBuck Reviews
    See Tool
    Learn More
    Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
  • 3
    Looker Reviews
    Top Pick
    Looker reinvents the way business intelligence (BI) works by delivering an entirely new kind of data discovery solution that modernizes BI in three important ways. A simplified web-based stack leverages our 100% in-database architecture, so customers can operate on big data and find the last mile of value in the new era of fast analytic databases. An agile development environment enables today’s data rockstars to model the data and create end-user experiences that make sense for each specific business, transforming data on the way out, rather than on the way in. At the same time, a self-service data-discovery experience works the way the web works, empowering business users to drill into and explore very large datasets without ever leaving the browser. As a result, Looker customers enjoy the power of traditional BI at the speed of the web.
  • 4
    Sifflet Reviews
    Effortlessly monitor thousands of tables through machine learning-driven anomaly detection alongside a suite of over 50 tailored metrics. Ensure comprehensive oversight of both data and metadata while meticulously mapping all asset dependencies from ingestion to business intelligence. This solution enhances productivity and fosters collaboration between data engineers and consumers. Sifflet integrates smoothly with your existing data sources and tools, functioning on platforms like AWS, Google Cloud Platform, and Microsoft Azure. Maintain vigilance over your data's health and promptly notify your team when quality standards are not satisfied. With just a few clicks, you can establish essential coverage for all your tables. Additionally, you can customize the frequency of checks, their importance, and specific notifications simultaneously. Utilize machine learning-driven protocols to identify any data anomalies with no initial setup required. Every rule is supported by a unique model that adapts based on historical data and user input. You can also enhance automated processes by utilizing a library of over 50 templates applicable to any asset, thereby streamlining your monitoring efforts even further. This approach not only simplifies data management but also empowers teams to respond proactively to potential issues.
  • 5
    Prophecy Reviews

    Prophecy

    Prophecy

    $299 per month
    Prophecy expands accessibility for a wider range of users, including visual ETL developers and data analysts, by allowing them to easily create pipelines through a user-friendly point-and-click interface combined with a few SQL expressions. While utilizing the Low-Code designer to construct workflows, you simultaneously generate high-quality, easily readable code for Spark and Airflow, which is then seamlessly integrated into your Git repository. The platform comes equipped with a gem builder, enabling rapid development and deployment of custom frameworks, such as those for data quality, encryption, and additional sources and targets that enhance the existing capabilities. Furthermore, Prophecy ensures that best practices and essential infrastructure are offered as managed services, simplifying your daily operations and overall experience. With Prophecy, you can achieve high-performance workflows that leverage the cloud's scalability and performance capabilities, ensuring that your projects run efficiently and effectively. This powerful combination of features makes it an invaluable tool for modern data workflows.
  • 6
    Ascend Reviews

    Ascend

    Ascend

    $0.98 per DFC
    Ascend provides data teams with a streamlined and automated platform that allows them to ingest, transform, and orchestrate their entire data engineering and analytics workloads at an unprecedented speed, achieving results ten times faster than before. This tool empowers teams that are often hindered by bottlenecks to effectively build, manage, and enhance the ever-growing volume of data workloads they face. With the support of DataAware intelligence, Ascend operates continuously in the background to ensure data integrity and optimize data workloads, significantly cutting down maintenance time by as much as 90%. Users can effortlessly create, refine, and execute data transformations through Ascend’s versatile flex-code interface, which supports the use of multiple programming languages such as SQL, Python, Java, and Scala interchangeably. Additionally, users can quickly access critical metrics including data lineage, data profiles, job and user logs, and system health indicators all in one view. Ascend also offers native connections to a continually expanding array of common data sources through its Flex-Code data connectors, ensuring seamless integration. This comprehensive approach not only enhances efficiency but also fosters stronger collaboration among data teams.
  • 7
    DQOps Reviews

    DQOps

    DQOps

    $499 per month
    DQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code.
  • 8
    Iterative Reviews
    AI teams encounter obstacles that necessitate the development of innovative technologies, which we specialize in creating. Traditional data warehouses and lakes struggle to accommodate unstructured data types such as text, images, and videos. Our approach integrates AI with software development, specifically designed for data scientists, machine learning engineers, and data engineers alike. Instead of reinventing existing solutions, we provide a swift and cost-effective route to bring your projects into production. Your data remains securely stored under your control, and model training occurs on your own infrastructure. By addressing the limitations of current data handling methods, we ensure that AI teams can effectively meet their challenges. Our Studio functions as an extension of platforms like GitHub, GitLab, or BitBucket, allowing seamless integration. You can choose to sign up for our online SaaS version or reach out for an on-premise installation tailored to your needs. This flexibility allows organizations of all sizes to adopt our solutions effectively.
  • 9
    Chalk Reviews

    Chalk

    Chalk

    Free
    Experience robust data engineering processes free from the challenges of infrastructure management. By utilizing straightforward, modular Python, you can define intricate streaming, scheduling, and data backfill pipelines with ease. Transition from traditional ETL methods and access your data instantly, regardless of its complexity. Seamlessly blend deep learning and large language models with structured business datasets to enhance decision-making. Improve forecasting accuracy using up-to-date information, eliminate the costs associated with vendor data pre-fetching, and conduct timely queries for online predictions. Test your ideas in Jupyter notebooks before moving them to a live environment. Avoid discrepancies between training and serving data while developing new workflows in mere milliseconds. Monitor all of your data operations in real-time to effortlessly track usage and maintain data integrity. Have full visibility into everything you've processed and the ability to replay data as needed. Easily integrate with existing tools and deploy on your infrastructure, while setting and enforcing withdrawal limits with tailored hold periods. With such capabilities, you can not only enhance productivity but also ensure streamlined operations across your data ecosystem.
  • 10
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 11
    Foghub Reviews
    Foghub streamlines the integration of IT and OT, enhancing data engineering and real-time intelligence at the edge. Its user-friendly, cross-platform design employs an open architecture to efficiently manage industrial time-series data. By facilitating the critical link between operational components like sensors, devices, and systems, and business elements such as personnel, processes, and applications, Foghub enables seamless automated data collection and engineering processes, including transformations, advanced analytics, and machine learning. The platform adeptly manages a diverse range of industrial data types, accommodating significant variety, volume, and velocity, while supporting a wide array of industrial network protocols, OT systems, and databases. Users can effortlessly automate data gathering related to production runs, batches, parts, cycle times, process parameters, asset health, utilities, consumables, and operator performance. Built with scalability in mind, Foghub provides an extensive suite of features to efficiently process and analyze large amounts of data, ensuring that businesses can maintain optimal performance and decision-making capabilities. As industries evolve and data demands increase, Foghub remains a pivotal solution for achieving effective IT/OT convergence.
  • 12
    witboost Reviews
    Witboost is an adaptable, high-speed, and effective data management solution designed to help businesses fully embrace a data-driven approach while cutting down on time-to-market, IT spending, and operational costs. The system consists of various modules, each serving as a functional building block that can operate independently to tackle specific challenges or be integrated to form a comprehensive data management framework tailored to your organization’s requirements. These individual modules enhance particular data engineering processes, allowing for a seamless combination that ensures swift implementation and significantly minimizes time-to-market and time-to-value, thereby lowering the overall cost of ownership of your data infrastructure. As urban environments evolve, smart cities increasingly rely on digital twins to forecast needs and mitigate potential issues, leveraging data from countless sources and managing increasingly intricate telematics systems. This approach not only facilitates better decision-making but also ensures that cities can adapt efficiently to ever-changing demands.
  • 13
    Vaex Reviews
    At Vaex.io, our mission is to make big data accessible to everyone, regardless of the machine or scale they are using. By reducing development time by 80%, we transform prototypes directly into solutions. Our platform allows for the creation of automated pipelines for any model, significantly empowering data scientists in their work. With our technology, any standard laptop can function as a powerful big data tool, eliminating the need for clusters or specialized engineers. We deliver dependable and swift data-driven solutions that stand out in the market. Our cutting-edge technology enables the rapid building and deployment of machine learning models, outpacing competitors. We also facilitate the transformation of your data scientists into proficient big data engineers through extensive employee training, ensuring that you maximize the benefits of our solutions. Our system utilizes memory mapping, an advanced expression framework, and efficient out-of-core algorithms, enabling users to visualize and analyze extensive datasets while constructing machine learning models on a single machine. This holistic approach not only enhances productivity but also fosters innovation within your organization.
  • 14
    Google Cloud Dataflow Reviews
    Data processing that integrates both streaming and batch operations while being serverless, efficient, and budget-friendly. It offers a fully managed service for data processing, ensuring seamless automation in the provisioning and administration of resources. With horizontal autoscaling capabilities, worker resources can be adjusted dynamically to enhance overall resource efficiency. The innovation is driven by the open-source community, particularly through the Apache Beam SDK. This platform guarantees reliable and consistent processing with exactly-once semantics. Dataflow accelerates the development of streaming data pipelines, significantly reducing data latency in the process. By adopting a serverless model, teams can devote their efforts to programming rather than the complexities of managing server clusters, effectively eliminating the operational burdens typically associated with data engineering tasks. Additionally, Dataflow’s automated resource management not only minimizes latency but also optimizes utilization, ensuring that teams can operate with maximum efficiency. Furthermore, this approach promotes a collaborative environment where developers can focus on building robust applications without the distraction of underlying infrastructure concerns.
  • Previous
  • You're on page 1
  • Next