Best Data Catalog Software for Apache Spark

Find and compare the best Data Catalog software for Apache Spark in 2025

Use the comparison tool below to compare the top Data Catalog software for Apache Spark on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Alteryx Reviews
    Embrace a groundbreaking age of analytics through the Alteryx AI Platform. Equip your organization with streamlined data preparation, analytics powered by artificial intelligence, and accessible machine learning, all while ensuring governance and security are built in. This marks the dawn of a new era for data-driven decision-making accessible to every user and team at all levels. Enhance your teams' capabilities with a straightforward, user-friendly interface that enables everyone to develop analytical solutions that boost productivity, efficiency, and profitability. Foster a robust analytics culture by utilizing a comprehensive cloud analytics platform that allows you to convert data into meaningful insights via self-service data preparation, machine learning, and AI-generated findings. Minimize risks and safeguard your data with cutting-edge security protocols and certifications. Additionally, seamlessly connect to your data and applications through open API standards, facilitating a more integrated and efficient analytical environment. By adopting these innovations, your organization can thrive in an increasingly data-centric world.
  • 2
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 3
    Amundsen Reviews
    Uncover and rely on data for your analyses and models while enhancing productivity by dismantling silos. Gain instant insights into data usage by others and locate data within your organization effortlessly through a straightforward text search. Utilizing a PageRank-inspired algorithm, the system suggests results based on names, descriptions, tags, and user activity associated with tables or dashboards. Foster confidence in your data with automated and curated metadata that includes detailed information on tables and columns, highlights frequent users, indicates the last update, provides statistics, and offers data previews when authorized. Streamline the process by linking the ETL jobs and the code that generated the data, making it easier to manage table and column descriptions while minimizing confusion about which tables to utilize and their contents. Additionally, observe which data sets are commonly accessed, owned, or marked by your colleagues, and discover the most frequent queries for any table by reviewing the dashboards that leverage that specific data. This comprehensive approach not only enhances collaboration but also drives informed decision-making across teams.
  • 4
    Sifflet Reviews
    Effortlessly monitor thousands of tables through machine learning-driven anomaly detection alongside a suite of over 50 tailored metrics. Ensure comprehensive oversight of both data and metadata while meticulously mapping all asset dependencies from ingestion to business intelligence. This solution enhances productivity and fosters collaboration between data engineers and consumers. Sifflet integrates smoothly with your existing data sources and tools, functioning on platforms like AWS, Google Cloud Platform, and Microsoft Azure. Maintain vigilance over your data's health and promptly notify your team when quality standards are not satisfied. With just a few clicks, you can establish essential coverage for all your tables. Additionally, you can customize the frequency of checks, their importance, and specific notifications simultaneously. Utilize machine learning-driven protocols to identify any data anomalies with no initial setup required. Every rule is supported by a unique model that adapts based on historical data and user input. You can also enhance automated processes by utilizing a library of over 50 templates applicable to any asset, thereby streamlining your monitoring efforts even further. This approach not only simplifies data management but also empowers teams to respond proactively to potential issues.
  • Previous
  • You're on page 1
  • Next