Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
The Universal Sentence Encoder (USE) transforms text into high-dimensional vectors that are useful for a range of applications, including text classification, semantic similarity, and clustering. It provides two distinct model types: one leveraging the Transformer architecture and another utilizing a Deep Averaging Network (DAN), which helps to balance accuracy and computational efficiency effectively. The Transformer-based variant generates context-sensitive embeddings by analyzing the entire input sequence at once, while the DAN variant creates embeddings by averaging the individual word embeddings, which are then processed through a feedforward neural network. These generated embeddings not only support rapid semantic similarity assessments but also improve the performance of various downstream tasks, even with limited supervised training data. Additionally, the USE can be easily accessed through TensorFlow Hub, making it simple to incorporate into diverse applications. This accessibility enhances its appeal to developers looking to implement advanced natural language processing techniques seamlessly.
Description
Word2Vec is a technique developed by Google researchers that employs a neural network to create word embeddings. This method converts words into continuous vector forms within a multi-dimensional space, effectively capturing semantic relationships derived from context. It primarily operates through two architectures: Skip-gram, which forecasts surrounding words based on a given target word, and Continuous Bag-of-Words (CBOW), which predicts a target word from its context. By utilizing extensive text corpora for training, Word2Vec produces embeddings that position similar words in proximity, facilitating various tasks such as determining semantic similarity, solving analogies, and clustering text. This model significantly contributed to the field of natural language processing by introducing innovative training strategies like hierarchical softmax and negative sampling. Although more advanced embedding models, including BERT and Transformer-based approaches, have since outperformed Word2Vec in terms of complexity and efficacy, it continues to serve as a crucial foundational technique in natural language processing and machine learning research. Its influence on the development of subsequent models cannot be overstated, as it laid the groundwork for understanding word relationships in deeper ways.
API Access
Has API
API Access
Has API
Screenshots View All
No images available
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Tensorflow
Founded
2015
Country
United States
Website
www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
Vendor Details
Company Name
Founded
1998
Country
United States
Website
code.google.com/archive/p/word2vec/