Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
A comprehensive platform for managing projects, models, and hosting, designed for organizations to transform their data and algorithms into cohesive, execution-ready AI strategies. Effortlessly build, train, and oversee models while ensuring security throughout the process. Create AI-driven products that can be accessed at any time and from any location. This approach minimizes the risks associated with AI investments and enhances strategic adaptability. It features fully automated processes for model testing, evaluation, deployment, scaling, and hardware load balancing, catering to both real-time low-latency high-throughput inference and longer batch inference. The pricing structure operates on a pay-per-second-of-use basis, including a service-level agreement (SLA) and comprehensive governance, monitoring, and auditing features. The platform boasts an intuitive interface that serves as a centralized hub for project management, dataset creation, visualization, and model training, all facilitated through collaborative and reproducible workflows. This empowers teams to work together seamlessly, ensuring that the development of AI solutions is efficient and effective.
Description
VLLM is an advanced library tailored for the efficient inference and deployment of Large Language Models (LLMs). Initially created at the Sky Computing Lab at UC Berkeley, it has grown into a collaborative initiative enriched by contributions from both academic and industry sectors. The library excels in providing exceptional serving throughput by effectively handling attention key and value memory through its innovative PagedAttention mechanism. It accommodates continuous batching of incoming requests and employs optimized CUDA kernels, integrating technologies like FlashAttention and FlashInfer to significantly improve the speed of model execution. Furthermore, VLLM supports various quantization methods, including GPTQ, AWQ, INT4, INT8, and FP8, and incorporates speculative decoding features. Users enjoy a seamless experience by integrating easily with popular Hugging Face models and benefit from a variety of decoding algorithms, such as parallel sampling and beam search. Additionally, VLLM is designed to be compatible with a wide range of hardware, including NVIDIA GPUs, AMD CPUs and GPUs, and Intel CPUs, ensuring flexibility and accessibility for developers across different platforms. This broad compatibility makes VLLM a versatile choice for those looking to implement LLMs efficiently in diverse environments.
API Access
Has API
API Access
Has API
Integrations
Amazon Web Services (AWS)
Docker
Google Cloud Platform
Hugging Face
KServe
Kubernetes
Microsoft Azure
NGINX
NVIDIA DRIVE
OpenAI
Integrations
Amazon Web Services (AWS)
Docker
Google Cloud Platform
Hugging Face
KServe
Kubernetes
Microsoft Azure
NGINX
NVIDIA DRIVE
OpenAI
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
SquareFactory
Founded
2022
Country
Switzerland
Website
www.squarefactory.io/product/
Vendor Details
Company Name
VLLM
Country
United States
Website
docs.vllm.ai/en/latest/
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization