Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Enhance and launch AI models using Simplismart's ultra-fast inference engine. Seamlessly connect with major cloud platforms like AWS, Azure, GCP, and others for straightforward, scalable, and budget-friendly deployment options. Easily import open-source models from widely-used online repositories or utilize your personalized custom model. You can opt to utilize your own cloud resources or allow Simplismart to manage your model hosting. With Simplismart, you can go beyond just deploying AI models; you have the capability to train, deploy, and monitor any machine learning model, achieving improved inference speeds while minimizing costs. Import any dataset for quick fine-tuning of both open-source and custom models. Efficiently conduct multiple training experiments in parallel to enhance your workflow, and deploy any model on our endpoints or within your own VPC or on-premises to experience superior performance at reduced costs. The process of streamlined and user-friendly deployment is now achievable. You can also track GPU usage and monitor all your node clusters from a single dashboard, enabling you to identify any resource limitations or model inefficiencies promptly. This comprehensive approach to AI model management ensures that you can maximize your operational efficiency and effectiveness.
Description
VLLM is an advanced library tailored for the efficient inference and deployment of Large Language Models (LLMs). Initially created at the Sky Computing Lab at UC Berkeley, it has grown into a collaborative initiative enriched by contributions from both academic and industry sectors. The library excels in providing exceptional serving throughput by effectively handling attention key and value memory through its innovative PagedAttention mechanism. It accommodates continuous batching of incoming requests and employs optimized CUDA kernels, integrating technologies like FlashAttention and FlashInfer to significantly improve the speed of model execution. Furthermore, VLLM supports various quantization methods, including GPTQ, AWQ, INT4, INT8, and FP8, and incorporates speculative decoding features. Users enjoy a seamless experience by integrating easily with popular Hugging Face models and benefit from a variety of decoding algorithms, such as parallel sampling and beam search. Additionally, VLLM is designed to be compatible with a wide range of hardware, including NVIDIA GPUs, AMD CPUs and GPUs, and Intel CPUs, ensuring flexibility and accessibility for developers across different platforms. This broad compatibility makes VLLM a versatile choice for those looking to implement LLMs efficiently in diverse environments.
API Access
Has API
API Access
Has API
Integrations
Hugging Face
Kubernetes
PyTorch
Amazon Web Services (AWS)
Codestral
KServe
Llama 3
Mathstral
Microsoft Azure
Ministral 3B
Integrations
Hugging Face
Kubernetes
PyTorch
Amazon Web Services (AWS)
Codestral
KServe
Llama 3
Mathstral
Microsoft Azure
Ministral 3B
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Simplismart
Founded
2022
Country
United States
Website
www.simplismart.ai/
Vendor Details
Company Name
VLLM
Country
United States
Website
docs.vllm.ai/en/latest/
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization