Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
The significance of streaming data derived from operations, transactions, sensors, and IoT devices becomes apparent when it is thoroughly comprehended. SAS's event stream processing offers a comprehensive solution that encompasses streaming data quality, analytics, and an extensive selection of SAS and open source machine learning techniques alongside high-frequency analytics. This integrated approach facilitates the connection, interpretation, cleansing, and comprehension of streaming data seamlessly. Regardless of the velocity at which your data flows, the volume of data you manage, or the diversity of data sources you utilize, you can oversee everything effortlessly through a single, user-friendly interface. Moreover, by defining patterns and addressing various scenarios across your entire organization, you can remain adaptable and proactively resolve challenges as they emerge while enhancing your overall operational efficiency.
Description
Spark Streaming extends the capabilities of Apache Spark by integrating its language-based API for stream processing, allowing you to create streaming applications in the same manner as batch applications. This powerful tool is compatible with Java, Scala, and Python. One of its key features is the automatic recovery of lost work and operator state, such as sliding windows, without requiring additional code from the user. By leveraging the Spark framework, Spark Streaming enables the reuse of the same code for batch processes, facilitates the joining of streams with historical data, and supports ad-hoc queries on the stream's state. This makes it possible to develop robust interactive applications rather than merely focusing on analytics. Spark Streaming is an integral component of Apache Spark, benefiting from regular testing and updates with each new release of Spark. Users can deploy Spark Streaming in various environments, including Spark's standalone cluster mode and other compatible cluster resource managers, and it even offers a local mode for development purposes. For production environments, Spark Streaming ensures high availability by utilizing ZooKeeper and HDFS, providing a reliable framework for real-time data processing. This combination of features makes Spark Streaming an essential tool for developers looking to harness the power of real-time analytics efficiently.
API Access
Has API
API Access
Has API
Integrations
Activeeon ProActive
Apache Spark
Azure Marketplace
PubSub+ Platform
Integrations
Activeeon ProActive
Apache Spark
Azure Marketplace
PubSub+ Platform
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
SAS Institute
Founded
1976
Country
United States
Website
www.sas.com/en_us/software/event-stream-processing.html
Vendor Details
Company Name
Apache Software Foundation
Founded
1999
Country
United States
Website
spark.apache.org/streaming/
Product Features
Streaming Analytics
Data Enrichment
Data Wrangling / Data Prep
Multiple Data Source Support
Process Automation
Real-time Analysis / Reporting
Visualization Dashboards