Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
RadCAD employs an advanced, oct-tree accelerated Monte-Carlo ray tracing algorithm to calculate radiation exchange factors and view factors with remarkable speed. The enhancements introduced by C&R Technologies in the ray tracing methodology have led to the development of a highly efficient thermal radiation analysis tool. By utilizing finite difference "conics" or curved finite elements from TD Direct®, RadCAD is capable of precisely simulating diffuse and specular reflections as well as transmissive surfaces, independent of node density. The thermal solution's requirements govern the node quantity, rather than the precision needed for radiation calculations. Furthermore, RadCAD allows users to create custom databases that specify optical properties, with each surface coating detailing its absorptivity, transmissivity, reflectivity, and specularity in both solar and infrared wavelengths. These optical characteristics can be tailored to account for variations in incident angles or wavelength dependencies, enhancing the accuracy and relevance of thermal modeling. Ultimately, this level of customization ensures that RadCAD meets diverse analytical needs across various applications.
Description
Simcenter MAGNET serves as an advanced simulation tool for analyzing electromagnetic fields, enabling users to predict the performance of various components such as motors, generators, sensors, transformers, actuators, and solenoids that involve permanent magnets or coils. By facilitating low-frequency electromagnetic field simulations, Simcenter MAGNET offers comprehensive modeling capabilities that accurately represent the underlying physics of electromagnetic devices. Among its features are the modeling of manufacturing processes, temperature-sensitive material properties, and the intricate behavior of magnetization and de-magnetization, along with vector hysteresis models. The software’s built-in motion solver incorporates a six-degree-of-freedom functionality, which allows for the precise modeling and analysis of complex scenarios such as magnetic levitation and intricate motion dynamics. This advanced capability is bolstered by innovative smart re-meshing technology, ensuring that even the most challenging electromagnetic problems can be effectively addressed. Consequently, Simcenter MAGNET stands out as an essential tool for engineers and designers looking to optimize electromagnetic systems in a range of applications.
API Access
Has API
API Access
Has API
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
C&R Technologies
Founded
1992
Country
United States
Website
www.crtech.com/products/radcad
Vendor Details
Company Name
Siemens
Country
United States
Website
plm.sw.siemens.com/en-US/simcenter/electromagnetics-simulation/magnet/
Product Features
CAD
2 1/2-Axis Milling
2D Drawing
3-Axis Milling
3D Modeling
4-Axis Milling
5-Axis Milling
Civil
Collaboration
Database Connectivity
Design Analysis
Design Export
Document Management
Electrical
Hole Making
Mechanical
Mechatronics
Presentation Tools
Simulate Cycles
Spiral Output
Structural Engineering
Toolpath Simulation
User Defined Cycles
Product Features
Simulation
1D Simulation
3D Modeling
3D Simulation
Agent-Based Modeling
Continuous Modeling
Design Analysis
Direct Manipulation
Discrete Event Modeling
Dynamic Modeling
Graphical Modeling
Industry Specific Database
Monte Carlo Simulation
Motion Modeling
Presentation Tools
Stochastic Modeling
Turbulence Modeling