Average Ratings 1 Rating
Average Ratings 0 Ratings
Description
Effortlessly switch between eager and graph modes using TorchScript, while accelerating your journey to production with TorchServe. The torch-distributed backend facilitates scalable distributed training and enhances performance optimization for both research and production environments. A comprehensive suite of tools and libraries enriches the PyTorch ecosystem, supporting development across fields like computer vision and natural language processing. Additionally, PyTorch is compatible with major cloud platforms, simplifying development processes and enabling seamless scaling. You can easily choose your preferences and execute the installation command. The stable version signifies the most recently tested and endorsed iteration of PyTorch, which is typically adequate for a broad range of users. For those seeking the cutting-edge, a preview is offered, featuring the latest nightly builds of version 1.10, although these may not be fully tested or supported. It is crucial to verify that you meet all prerequisites, such as having numpy installed, based on your selected package manager. Anaconda is highly recommended as the package manager of choice, as it effectively installs all necessary dependencies, ensuring a smooth installation experience for users. This comprehensive approach not only enhances productivity but also ensures a robust foundation for development.
Description
Torch is a powerful framework for scientific computing that prioritizes GPU utilization and offers extensive support for various machine learning algorithms. Its user-friendly design is enhanced by LuaJIT, a fast scripting language, alongside a robust C/CUDA backbone that ensures efficiency. The primary aim of Torch is to provide both exceptional flexibility and speed in the development of scientific algorithms, all while maintaining simplicity in the process. With a rich array of community-driven packages, Torch caters to diverse fields such as machine learning, computer vision, signal processing, and more, effectively leveraging the resources of the Lua community. Central to Torch's functionality are its widely-used neural network and optimization libraries, which strike a balance between ease of use and flexibility for crafting intricate neural network architectures. Users can create complex graphs of neural networks and efficiently distribute the workload across multiple CPUs and GPUs, thereby optimizing performance. Overall, Torch serves as a versatile tool for researchers and developers aiming to advance their work in various computational domains.
API Access
Has API
API Access
Has API
Integrations
3LC
Activeeon ProActive
Amazon EC2 P4 Instances
Amazon SageMaker Unified Studio
CodeQwen
Dataoorts GPU Cloud
FakeYou
GPUEater
HStreamDB
Huawei Cloud ModelArts
Integrations
3LC
Activeeon ProActive
Amazon EC2 P4 Instances
Amazon SageMaker Unified Studio
CodeQwen
Dataoorts GPU Cloud
FakeYou
GPUEater
HStreamDB
Huawei Cloud ModelArts
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
PyTorch
Founded
2016
Website
pytorch.org
Vendor Details
Company Name
Torch
Website
torch.ch/
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization