Average Ratings 1 Rating

Total
ease
features
design
support

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Effortlessly switch between eager and graph modes using TorchScript, while accelerating your journey to production with TorchServe. The torch-distributed backend facilitates scalable distributed training and enhances performance optimization for both research and production environments. A comprehensive suite of tools and libraries enriches the PyTorch ecosystem, supporting development across fields like computer vision and natural language processing. Additionally, PyTorch is compatible with major cloud platforms, simplifying development processes and enabling seamless scaling. You can easily choose your preferences and execute the installation command. The stable version signifies the most recently tested and endorsed iteration of PyTorch, which is typically adequate for a broad range of users. For those seeking the cutting-edge, a preview is offered, featuring the latest nightly builds of version 1.10, although these may not be fully tested or supported. It is crucial to verify that you meet all prerequisites, such as having numpy installed, based on your selected package manager. Anaconda is highly recommended as the package manager of choice, as it effectively installs all necessary dependencies, ensuring a smooth installation experience for users. This comprehensive approach not only enhances productivity but also ensures a robust foundation for development.

Description

Torch is a powerful framework for scientific computing that prioritizes GPU utilization and offers extensive support for various machine learning algorithms. Its user-friendly design is enhanced by LuaJIT, a fast scripting language, alongside a robust C/CUDA backbone that ensures efficiency. The primary aim of Torch is to provide both exceptional flexibility and speed in the development of scientific algorithms, all while maintaining simplicity in the process. With a rich array of community-driven packages, Torch caters to diverse fields such as machine learning, computer vision, signal processing, and more, effectively leveraging the resources of the Lua community. Central to Torch's functionality are its widely-used neural network and optimization libraries, which strike a balance between ease of use and flexibility for crafting intricate neural network architectures. Users can create complex graphs of neural networks and efficiently distribute the workload across multiple CPUs and GPUs, thereby optimizing performance. Overall, Torch serves as a versatile tool for researchers and developers aiming to advance their work in various computational domains.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

3LC
Activeeon ProActive
Amazon EC2 P4 Instances
Amazon SageMaker Unified Studio
CodeQwen
Dataoorts GPU Cloud
FakeYou
GPUEater
HStreamDB
Huawei Cloud ModelArts
Lightning AI
Modelbit
NVIDIA AI Foundations
NVIDIA DeepStream SDK
NVIDIA NGC
NVIDIA Triton Inference Server
Unify AI
spaCy
voyage-3-large

Integrations

3LC
Activeeon ProActive
Amazon EC2 P4 Instances
Amazon SageMaker Unified Studio
CodeQwen
Dataoorts GPU Cloud
FakeYou
GPUEater
HStreamDB
Huawei Cloud ModelArts
Lightning AI
Modelbit
NVIDIA AI Foundations
NVIDIA DeepStream SDK
NVIDIA NGC
NVIDIA Triton Inference Server
Unify AI
spaCy
voyage-3-large

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

PyTorch

Founded

2016

Website

pytorch.org

Vendor Details

Company Name

Torch

Website

torch.ch/

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Core ML Reviews

Core ML

Apple

Alternatives

MXNet Reviews

MXNet

The Apache Software Foundation
Create ML Reviews

Create ML

Apple
Neural Designer Reviews

Neural Designer

Artelnics