Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
A data lakehouse represents a contemporary, open architecture designed for storing, comprehending, and analyzing comprehensive data sets. It merges the robust capabilities of traditional data warehouses with the extensive flexibility offered by widely used open-source data technologies available today. Constructing a data lakehouse can be accomplished on Oracle Cloud Infrastructure (OCI), allowing seamless integration with cutting-edge AI frameworks and pre-configured AI services such as Oracle’s language processing capabilities. With Data Flow, a serverless Spark service, users can concentrate on their Spark workloads without needing to manage underlying infrastructure. Many Oracle clients aim to develop sophisticated analytics powered by machine learning, applied to their Oracle SaaS data or other SaaS data sources. Furthermore, our user-friendly data integration connectors streamline the process of establishing a lakehouse, facilitating thorough analysis of all data in conjunction with your SaaS data and significantly accelerating the time to achieve solutions. This innovative approach not only optimizes data management but also enhances analytical capabilities for businesses looking to leverage their data effectively.
Description
The market experiences limited competition as a result of significant entry barriers, specialized expertise, substantial capital requirements, and extended time-to-market. Moreover, current platforms offer similar pricing and performance, which diminishes the motivation for users to transition. Transitioning from one SQL dialect to another can take months of intensive work. There is a demand for format-independent computing that can seamlessly work with all major open standards. Data leaders in enterprises are currently facing an extraordinary surge in the need for data intelligence. They are taken aback to discover that a mere 10% of their most demanding, compute-heavy tasks account for 80% of the costs, engineering resources, and stakeholder grievances. Regrettably, these workloads are also essential and cannot be neglected. e6data enhances the return on investment for a company's current data platforms and infrastructure. Notably, e6data’s format-agnostic computing stands out for its remarkable efficiency and performance across various leading data lakehouse table formats, thereby providing a significant advantage in optimizing enterprise operations. This innovative solution positions organizations to better manage their data-driven demands while maximizing their existing resources.
API Access
Has API
API Access
Has API
Integrations
Amazon S3
Amazon Web Services (AWS)
Apache Avro
Apache Hive
Apache Hudi
Apache Parquet
Delta
Google Cloud Platform
Iceberg
Microsoft Azure
Integrations
Amazon S3
Amazon Web Services (AWS)
Apache Avro
Apache Hive
Apache Hudi
Apache Parquet
Delta
Google Cloud Platform
Iceberg
Microsoft Azure
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Oracle
Founded
1977
Country
United States
Website
www.oracle.com/data-lakehouse/
Vendor Details
Company Name
e6data
Founded
2020
Country
United States
Website
www.e6data.com
Product Features
Data Management
Customer Data
Data Analysis
Data Capture
Data Integration
Data Migration
Data Quality Control
Data Security
Information Governance
Master Data Management
Match & Merge
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge
Product Features
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge