Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Power Query provides a user-friendly solution for connecting, extracting, transforming, and loading data from a variety of sources. Acting as a robust engine for data preparation and transformation, Power Query features a graphical interface that simplifies the data retrieval process and includes a Power Query Editor for implementing necessary changes. The versatility of the engine allows it to be integrated across numerous products and services, meaning the storage location of the data is determined by the specific application of Power Query. This tool enables users to efficiently carry out the extract, transform, and load (ETL) processes for their data needs. With Microsoft’s Data Connectivity and Data Preparation technology, users can easily access and manipulate data from hundreds of sources in a straightforward, no-code environment. Power Query is equipped with support for a multitude of data sources through built-in connectors, generic interfaces like REST APIs, ODBC, OLE, DB, and OData, and even offers a Power Query SDK for creating custom connectors tailored to individual requirements. This flexibility makes Power Query an indispensable asset for data professionals seeking to streamline their workflows.
Description
Effortlessly load your data into or extract it from Hadoop and data lakes, ensuring it is primed for generating reports, visualizations, or conducting advanced analytics—all within the data lakes environment. This streamlined approach allows you to manage, transform, and access data stored in Hadoop or data lakes through a user-friendly web interface, minimizing the need for extensive training. Designed specifically for big data management on Hadoop and data lakes, this solution is not simply a rehash of existing IT tools. It allows for the grouping of multiple directives to execute either concurrently or sequentially, enhancing workflow efficiency. Additionally, you can schedule and automate these directives via the public API provided. The platform also promotes collaboration and security by enabling the sharing of directives. Furthermore, these directives can be invoked from SAS Data Integration Studio, bridging the gap between technical and non-technical users. It comes equipped with built-in directives for various tasks, including casing, gender and pattern analysis, field extraction, match-merge, and cluster-survive operations. For improved performance, profiling processes are executed in parallel on the Hadoop cluster, allowing for the seamless handling of large datasets. This comprehensive solution transforms the way you interact with data, making it more accessible and manageable than ever.
API Access
Has API
API Access
Has API
Integrations
Hadoop
Microsoft Power BI
Automation Anywhere
Azure Costs
Azure Data Lake
Azure SQL Database
Data Virtuality
Denodo
Facebook
FactSet
Integrations
Hadoop
Microsoft Power BI
Automation Anywhere
Azure Costs
Azure Data Lake
Azure SQL Database
Data Virtuality
Denodo
Facebook
FactSet
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
powerquery.microsoft.com/en-us/
Vendor Details
Company Name
SAS
Founded
1976
Country
United States
Website
www.sas.com/en_us/software/data-loader-for-hadoop.html
Product Features
Data Preparation
Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface
ETL
Data Analysis
Data Filtering
Data Quality Control
Job Scheduling
Match & Merge
Metadata Management
Non-Relational Transformations
Version Control
Product Features
Data Preparation
Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface