Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Materialize is an innovative reactive database designed to provide updates to views incrementally. It empowers developers to seamlessly work with streaming data through the use of standard SQL. One of the key advantages of Materialize is its ability to connect directly to a variety of external data sources without the need for pre-processing. Users can link to real-time streaming sources such as Kafka, Postgres databases, and change data capture (CDC), as well as access historical data from files or S3. The platform enables users to execute queries, perform joins, and transform various data sources using standard SQL, presenting the outcomes as incrementally-updated Materialized views. As new data is ingested, queries remain active and are continuously refreshed, allowing developers to create data visualizations or real-time applications with ease. Moreover, constructing applications that utilize streaming data becomes a straightforward task, often requiring just a few lines of SQL code, which significantly enhances productivity. With Materialize, developers can focus on building innovative solutions rather than getting bogged down in complex data management tasks.
Description
VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data.
It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries.
VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data.
The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources.
Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments.
API Access
Has API
API Access
Has API
Integrations
Apache Kafka
Amazon Kinesis
Amazon S3
Apache Doris
Apache Flink
Apache Spark
DataClarity Unlimited Analytics
Debezium
Gravity Data
Hue
Integrations
Apache Kafka
Amazon Kinesis
Amazon S3
Apache Doris
Apache Flink
Apache Spark
DataClarity Unlimited Analytics
Debezium
Gravity Data
Hue
Pricing Details
$0.98 per hour
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Materialize
Country
United States
Website
materialize.com
Vendor Details
Company Name
VeloDB
Founded
2023
Country
Singapore
Website
www.velodb.io
Product Features
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge
Database
Backup and Recovery
Creation / Development
Data Migration
Data Replication
Data Search
Data Security
Database Conversion
Mobile Access
Monitoring
NOSQL
Performance Analysis
Queries
Relational Interface
Virtualization
Streaming Analytics
Data Enrichment
Data Wrangling / Data Prep
Multiple Data Source Support
Process Automation
Real-time Analysis / Reporting
Visualization Dashboards
Product Features
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge