Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Ludwig serves as a low-code platform specifically designed for the development of tailored AI models, including large language models (LLMs) and various deep neural networks. With Ludwig, creating custom models becomes a straightforward task; you only need a simple declarative YAML configuration file to train an advanced LLM using your own data. It offers comprehensive support for learning across multiple tasks and modalities. The framework includes thorough configuration validation to identify invalid parameter combinations and avert potential runtime errors. Engineered for scalability and performance, it features automatic batch size determination, distributed training capabilities (including DDP and DeepSpeed), parameter-efficient fine-tuning (PEFT), 4-bit quantization (QLoRA), and the ability to handle larger-than-memory datasets. Users enjoy expert-level control, allowing them to manage every aspect of their models, including activation functions. Additionally, Ludwig facilitates hyperparameter optimization, offers insights into explainability, and provides detailed metric visualizations. Its modular and extensible architecture enables users to experiment with various model designs, tasks, features, and modalities with minimal adjustments in the configuration, making it feel like a set of building blocks for deep learning innovations. Ultimately, Ludwig empowers developers to push the boundaries of AI model creation while maintaining ease of use.
Description
Segmind simplifies access to extensive computing resources, making it ideal for executing demanding tasks like deep learning training and various intricate processing jobs. It offers environments that require no setup within minutes, allowing for easy collaboration among team members. Additionally, Segmind's MLOps platform supports comprehensive management of deep learning projects, featuring built-in data storage and tools for tracking experiments. Recognizing that machine learning engineers often lack expertise in cloud infrastructure, Segmind takes on the complexities of cloud management, enabling teams to concentrate on their strengths and enhance model development efficiency. As training machine learning and deep learning models can be time-consuming and costly, Segmind allows for effortless scaling of computational power while potentially cutting costs by up to 70% through managed spot instances. Furthermore, today's ML managers often struggle to maintain an overview of ongoing ML development activities and associated expenses, highlighting the need for robust management solutions in the field. By addressing these challenges, Segmind empowers teams to achieve their goals more effectively.
API Access
Has API
API Access
Has API
Integrations
Aim
Alpaca
Comet
Discord
Docker
Hugging Face
Hyperbolic
Kubernetes
Llama 2
MLflow
Integrations
Aim
Alpaca
Comet
Discord
Docker
Hugging Face
Hyperbolic
Kubernetes
Llama 2
MLflow
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
$5
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Uber AI
Founded
2016
Country
United States
Website
ludwig.ai/latest/
Vendor Details
Company Name
Segmind
Founded
2020
Country
India
Website
Segmind.com
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization