Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

You can access models through the integrated Chat UI of the app or by utilizing a local server that is compatible with OpenAI. The minimum specifications required include either an M1, M2, or M3 Mac, or a Windows PC equipped with a processor that supports AVX2 instructions. Additionally, Linux support is currently in beta. A primary advantage of employing a local LLM is the emphasis on maintaining privacy, which is a core feature of LM Studio. This ensures that your information stays secure and confined to your personal device. Furthermore, you have the capability to operate LLMs that you import into LM Studio through an API server that runs on your local machine. Overall, this setup allows for a tailored and secure experience when working with language models.

Description

VLLM is an advanced library tailored for the efficient inference and deployment of Large Language Models (LLMs). Initially created at the Sky Computing Lab at UC Berkeley, it has grown into a collaborative initiative enriched by contributions from both academic and industry sectors. The library excels in providing exceptional serving throughput by effectively handling attention key and value memory through its innovative PagedAttention mechanism. It accommodates continuous batching of incoming requests and employs optimized CUDA kernels, integrating technologies like FlashAttention and FlashInfer to significantly improve the speed of model execution. Furthermore, VLLM supports various quantization methods, including GPTQ, AWQ, INT4, INT8, and FP8, and incorporates speculative decoding features. Users enjoy a seamless experience by integrating easily with popular Hugging Face models and benefit from a variety of decoding algorithms, such as parallel sampling and beam search. Additionally, VLLM is designed to be compatible with a wide range of hardware, including NVIDIA GPUs, AMD CPUs and GPUs, and Intel CPUs, ensuring flexibility and accessibility for developers across different platforms. This broad compatibility makes VLLM a versatile choice for those looking to implement LLMs efficiently in diverse environments.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Hugging Face
OpenAI
Continue
Docker
KServe
Kubernetes
Llama 2
NGINX
NVIDIA DRIVE
Nelly
PyTorch
StarCoder
Vicuna
bolt.diy

Integrations

Hugging Face
OpenAI
Continue
Docker
KServe
Kubernetes
Llama 2
NGINX
NVIDIA DRIVE
Nelly
PyTorch
StarCoder
Vicuna
bolt.diy

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

LM Studio

Website

lmstudio.ai

Vendor Details

Company Name

VLLM

Country

United States

Website

docs.vllm.ai/en/latest/

Product Features

Artificial Intelligence

Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)

Product Features

Alternatives

Alternatives

OpenVINO Reviews

OpenVINO

Intel