Learn More

Average Ratings 1 Rating

Total
ease
features
design
support

Average Ratings 203 Ratings

Description

K2View believes that every enterprise should be able to leverage its data to become as disruptive and agile as possible. We enable this through our Data Product Platform, which creates and manages a trusted dataset for every business entity – on demand, in real time. The dataset is always in sync with its sources, adapts to changes on the fly, and is instantly accessible to any authorized data consumer. We fuel operational use cases, including customer 360, data masking, test data management, data migration, and legacy application modernization – to deliver business outcomes at half the time and cost of other alternatives.

Description

dbt Labs is redefining how data teams work with SQL. Instead of waiting on complex ETL processes, dbt lets data analysts and data engineers build production-ready transformations directly in the warehouse, using code, version control, and CI/CD. This community-driven approach puts power back in the hands of practitioners while maintaining governance and scalability for enterprise use. With a rapidly growing open-source community and an enterprise-grade cloud platform, dbt is at the heart of the modern data stack. It’s the go-to solution for teams who want faster analytics, higher quality data, and the confidence that comes from transparent, testable transformations.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Azure Marketplace
Amazon Redshift
Blotout
Cake AI
Collate
Cuckoo
Datakin
Hex
Meltano
Mode
Openbridge
Paradime
PopSQL
Secoda
Select Star
Snowflake
Snowflake Cortex AI
Spresso
Stonebranch
intermix.io

Integrations

Azure Marketplace
Amazon Redshift
Blotout
Cake AI
Collate
Cuckoo
Datakin
Hex
Meltano
Mode
Openbridge
Paradime
PopSQL
Secoda
Select Star
Snowflake
Snowflake Cortex AI
Spresso
Stonebranch
intermix.io

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

$100 per user/ month
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

K2View

Founded

2009

Country

United States

Website

k2view.com

Vendor Details

Company Name

dbt Labs

Founded

2016

Country

United States

Website

www.getdbt.com

Product Features

Customer Data Platforms (CDP)

Behavioral Analytics
Campaign Management
Customer Profiles
Customer Segmentation
Data Integration
Data Matching
GDPR Compliance
Personalization
Predictive Modeling

Data Fabric

Data Access Management
Data Analytics
Data Collaboration
Data Lineage Tools
Data Networking / Connecting
Metadata Functionality
No Data Redundancy
Persistent Data Management

Data Governance

Access Control
Data Discovery
Data Mapping
Data Profiling
Deletion Management
Email Management
Policy Management
Process Management
Roles Management
Storage Management

Data Management

Customer Data
Data Analysis
Data Capture
Data Integration
Data Migration
Data Quality Control
Data Security
Information Governance
Master Data Management
Match & Merge

Data Preparation

Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface

Data Privacy Management

Access Control
CCPA Compliance
Consent Management
Data Mapping
GDPR Compliance
Incident Management
PIA / DPIA
Policy Management
Risk Management
Sensitive Data Identification

GDPR Compliance

Access Control
Consent Management
Data Mapping
Incident Management
PIA / DPIA
Policy Management
Risk Management
Sensitive Data Identification

Integration

Dashboard
ETL - Extract / Transform / Load
Metadata Management
Multiple Data Sources
Web Services

iPaaS

AI / Machine Learning
Cloud Data Integration
Dashboard
Data Quality Control
Data Security
Drag & Drop
Embedded iPaaS
Integration Management
Pre-Built Connectors
White Label
Workflow Management

Master Data Management

Data Governance
Data Masking
Data Source Integrations
Hierarchy Management
Match & Merge
Metadata Management
Multi-Domain
Process Management
Relationship Mapping
Visualization

Product Features

Big Data

Your knowledge is based on information available until October 2023.

Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates

Data Lineage

Database Change Impact Analysis
Filter Lineage Links
Implicit Connection Discovery
Lineage Object Filtering
Object Lineage Tracing
Point-in-Time Visibility
User/Client/Target Connection Visibility
Visual & Text Lineage View

Data Pipeline

dbt serves as the backbone for the transformation segment of contemporary data pipelines. After data is brought into a warehouse or lakehouse, dbt empowers teams to refine, structure, and document it, making it suitable for analytics and artificial intelligence applications. With dbt, teams can: - Scale the transformation of unrefined data using SQL and Jinja. - Manage workflows with integrated dependency tracking and scheduling capabilities. - Build trust through automated testing and ongoing integration processes. - Map data lineage across models and columns for quicker impact assessments. By incorporating software engineering methodologies into pipeline development, dbt assists data teams in creating dependable, production-ready pipelines that expedite the journey to insights and provide data primed for AI utilization.

Data Preparation

dbt enhances data preparation by providing a structured and scalable approach for teams to clean, transform, and organize raw data within the warehouse environment. Rather than relying on isolated spreadsheets or manual processes, dbt leverages SQL alongside established software engineering practices to ensure that data preparation is consistent, dependable, and collaborative. Utilizing dbt allows teams to: - Clean and standardize their data through reusable models that are version-controlled. - Implement business logic uniformly across all data sets. - Conduct automated tests to validate outputs prior to making data available to analysts. - Document findings and share relevant context, ensuring that every prepared dataset includes lineage and definitions. By treating data preparation as a coding process, dbt guarantees that the datasets created are not merely temporary solutions but are reliable, governed assets that are ready for production and can grow alongside the business.

Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface

Data Quality

Your knowledge is based on information available until October 2023.

Address Validation
Data Deduplication
Data Discovery
Data Profililng
Master Data Management
Match & Merge
Metadata Management

ETL

dbt revolutionizes the transformation aspect of ETL processes. By moving away from outdated pipelines and opaque transformations, dbt enables data teams to create, validate, and document their transformations directly within their data warehouse or lakehouse. With dbt, teams are equipped to: - Convert raw data into analytics-ready models utilizing SQL and Jinja. - Maintain data integrity through integrated testing, version control, and continuous integration/continuous deployment (CI/CD). - Streamline workflows across teams by using reusable models and centralized documentation. - Utilize contemporary platforms such as Snowflake, Databricks, BigQuery, and Redshift for efficient and scalable transformations. By prioritizing the transformation layer, dbt allows organizations to accelerate the development of data pipelines, minimize data liabilities, and provide reliable insights more swiftly—complementing the ingestion and loading components of a modern ELT architecture.

Data Analysis
Data Filtering
Data Quality Control
Job Scheduling
Match & Merge
Metadata Management
Non-Relational Transformations
Version Control

Alternatives

Alternatives

Delphix Reviews

Delphix

Perforce
IRI DarkShield Reviews

IRI DarkShield

IRI, The CoSort Company