Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

JADBio is an automated machine learning platform that uses JADBio's state-of-the art technology without any programming. It solves many open problems in machine-learning with its innovative algorithms. It is easy to use and can perform sophisticated and accurate machine learning analyses, even if you don't know any math, statistics or coding. It was specifically designed for life science data, particularly molecular data. It can handle the unique molecular data issues such as low sample sizes and high numbers of measured quantities, which could reach into the millions. It is essential for life scientists to identify the biomarkers and features that are predictive and important. They also need to know their roles and how they can help them understand the molecular mechanisms. Knowledge discovery is often more important that a predictive model. JADBio focuses on feature selection, and its interpretation.

Description

Scikit-learn offers a user-friendly and effective suite of tools for predictive data analysis, making it an indispensable resource for those in the field. This powerful, open-source machine learning library is built for the Python programming language and aims to simplify the process of data analysis and modeling. Drawing from established scientific libraries like NumPy, SciPy, and Matplotlib, Scikit-learn presents a diverse array of both supervised and unsupervised learning algorithms, positioning itself as a crucial asset for data scientists, machine learning developers, and researchers alike. Its structure is designed to be both consistent and adaptable, allowing users to mix and match different components to meet their unique requirements. This modularity empowers users to create intricate workflows, streamline repetitive processes, and effectively incorporate Scikit-learn into expansive machine learning projects. Furthermore, the library prioritizes interoperability, ensuring seamless compatibility with other Python libraries, which greatly enhances data processing capabilities and overall efficiency. As a result, Scikit-learn stands out as a go-to toolkit for anyone looking to delve into the world of machine learning.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

DagsHub
Databricks Data Intelligence Platform
Flower
Guild AI
Intel Tiber AI Studio
Keepsake
MLJAR Studio
Matplotlib
ModelOp
NumPy
Python
Train in Data

Integrations

DagsHub
Databricks Data Intelligence Platform
Flower
Guild AI
Intel Tiber AI Studio
Keepsake
MLJAR Studio
Matplotlib
ModelOp
NumPy
Python
Train in Data

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

JADBio

Founded

2019

Country

United States

Website

jadbio.com

Vendor Details

Company Name

scikit-learn

Country

United States

Website

scikit-learn.org/stable/

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Predictive Analytics

AI / Machine Learning
Benchmarking
Data Blending
Data Mining
Demand Forecasting
For Education
For Healthcare
Modeling & Simulation
Sentiment Analysis

Qualitative Data Analysis

Annotations
Collaboration
Data Visualization
Media Analytics
Mixed Methods Research
Multi-Language
Qualitative Comparative Analysis
Quantitative Content Analysis
Sentiment Analysis
Statistical Analysis
Text Analytics
User Research Analysis

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Luminoso Reviews

Luminoso

Luminoso Technologies Inc.

Alternatives

ML.NET Reviews

ML.NET

Microsoft
Gensim Reviews

Gensim

Radim Řehůřek
Keepsake Reviews

Keepsake

Replicate
g.nome Reviews

g.nome

Almaden Genomics
MLlib Reviews

MLlib

Apache Software Foundation