Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Instructor serves as a powerful tool for developers who wish to derive structured data from natural language input by utilizing Large Language Models (LLMs). By integrating seamlessly with Python's Pydantic library, it enables users to specify the desired output structures through type hints, which not only streamlines schema validation but also enhances compatibility with various integrated development environments (IDEs). The platform is compatible with multiple LLM providers such as OpenAI, Anthropic, Litellm, and Cohere, thus offering a wide range of implementation options. Its customizable features allow users to define specific validators and tailor error messages, significantly improving the data validation workflow. Trusted by engineers from notable platforms like Langflow, Instructor demonstrates a high level of reliability and effectiveness in managing structured outputs driven by LLMs. Additionally, the reliance on Pydantic and type hints simplifies the process of schema validation and prompting, requiring less effort and code from developers while ensuring smooth integration with their IDEs. This adaptability makes Instructor an invaluable asset for developers looking to enhance their data extraction and validation processes.

Description

PydanticAI is an innovative framework crafted in Python that aims to facilitate the creation of high-quality applications leveraging generative AI technologies. Developed by the creators of Pydantic, this framework connects effortlessly with leading AI models such as OpenAI, Anthropic, and Gemini. It features a type-safe architecture, enabling real-time debugging and performance tracking through the Pydantic Logfire system. By utilizing Pydantic for output validation, PydanticAI guarantees structured and consistent responses from models. Additionally, the framework incorporates a dependency injection system, which aids in the iterative process of development and testing, and allows for the streaming of LLM outputs to support quick validation. Perfectly suited for AI-centric initiatives, PydanticAI promotes an adaptable and efficient composition of agents while adhering to established Python best practices. Ultimately, the goal behind PydanticAI is to replicate the user-friendly experience of FastAPI in the realm of generative AI application development, thereby enhancing the overall workflow for developers.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Claude
OpenAI
Python
Cohere
Elixir
Gemini
Gemini 1.5 Flash
Gemini 1.5 Pro
Gemini 2.0
Gemini 2.0 Flash
Gemini Advanced
Gemini Nano
Gemini Pro
Instructor
Langflow
PHP
PydanticAI
Ruby
TypeScript

Integrations

Claude
OpenAI
Python
Cohere
Elixir
Gemini
Gemini 1.5 Flash
Gemini 1.5 Pro
Gemini 2.0
Gemini 2.0 Flash
Gemini Advanced
Gemini Nano
Gemini Pro
Instructor
Langflow
PHP
PydanticAI
Ruby
TypeScript

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Instructor

Website

useinstructor.com

Vendor Details

Company Name

Pydantic

Country

United States

Website

ai.pydantic.dev/

Product Features

Product Features

Alternatives

Alternatives

PydanticAI Reviews

PydanticAI

Pydantic