Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Enhance the efficiency of your deep learning projects and reduce the time it takes to realize value through AI model training and inference. As technology continues to improve in areas like computation, algorithms, and data accessibility, more businesses are embracing deep learning to derive and expand insights in fields such as speech recognition, natural language processing, and image classification. This powerful technology is capable of analyzing text, images, audio, and video on a large scale, allowing for the generation of patterns used in recommendation systems, sentiment analysis, financial risk assessments, and anomaly detection. The significant computational resources needed to handle neural networks stem from their complexity, including multiple layers and substantial training data requirements. Additionally, organizations face challenges in demonstrating the effectiveness of deep learning initiatives that are executed in isolation, which can hinder broader adoption and integration. The shift towards more collaborative approaches may help mitigate these issues and enhance the overall impact of deep learning strategies within companies.
Description
JAX is a specialized Python library tailored for high-performance numerical computation and research in machine learning. It provides a familiar NumPy-like interface, making it easy for users already accustomed to NumPy to adopt it. Among its standout features are automatic differentiation, just-in-time compilation, vectorization, and parallelization, all of which are finely tuned for execution across CPUs, GPUs, and TPUs. These functionalities are designed to facilitate efficient calculations for intricate mathematical functions and expansive machine-learning models. Additionally, JAX seamlessly integrates with various components in its ecosystem, including Flax for building neural networks and Optax for handling optimization processes. Users can access extensive documentation, complete with tutorials and guides, to fully harness the capabilities of JAX. This wealth of resources ensures that both beginners and advanced users can maximize their productivity while working with this powerful library.
API Access
Has API
API Access
Has API
Integrations
AUSIS
Equinox
Flower
Gemma 3n
Grain
Hugging Face
IBM Intelligent Video Analytics
Keras
LiteRT
NumPy
Integrations
AUSIS
Equinox
Flower
Gemma 3n
Grain
Hugging Face
IBM Intelligent Video Analytics
Keras
LiteRT
NumPy
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
IBM
Founded
1911
Country
United States
Website
www.ibm.com/products/deep-learning-platform
Vendor Details
Company Name
JAX
Country
United States
Website
docs.jax.dev/en/latest/
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization