Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Boost the pace of AI innovation through cloud-native data integration offered by IBM Cloud Pak for Data. With AI-driven data integration capabilities accessible from anywhere, the effectiveness of your AI and analytics is directly linked to the quality of the data supporting them. Utilizing a modern container-based architecture, IBM® DataStage® for IBM Cloud Pak® for Data ensures the delivery of superior data. This solution merges top-tier data integration with DataOps, governance, and analytics within a unified data and AI platform. By automating administrative tasks, it helps in lowering total cost of ownership (TCO). The platform's AI-based design accelerators, along with ready-to-use integrations with DataOps and data science services, significantly hasten AI advancements. Furthermore, its parallelism and multicloud integration capabilities enable the delivery of reliable data on a large scale across diverse hybrid or multicloud settings. Additionally, you can efficiently manage the entire data and analytics lifecycle on the IBM Cloud Pak for Data platform, which encompasses a variety of services such as data science, event messaging, data virtualization, and data warehousing, all bolstered by a parallel engine and automated load balancing features. This comprehensive approach ensures that your organization stays ahead in the rapidly evolving landscape of data and AI.
Description
iceDQ, a DataOps platform that allows monitoring and testing, is a DataOps platform. iceDQ is an agile rules engine that automates ETL Testing, Data Migration Testing and Big Data Testing. It increases productivity and reduces project timelines for testing data warehouses and ETL projects. Identify data problems in your Data Warehouse, Big Data, and Data Migration Projects. The iceDQ platform can transform your ETL or Data Warehouse Testing landscape. It automates it from end to end, allowing the user to focus on analyzing the issues and fixing them. The first edition of iceDQ was designed to validate and test any volume of data with our in-memory engine. It can perform complex validation using SQL and Groovy. It is optimized for Data Warehouse Testing. It scales based upon the number of cores on a server and is 5X faster that the standard edition.
API Access
Has API
API Access
Has API
Integrations
ActiveBatch Workload Automation
BMC AMI Ops Automation for Capping
BMC Helix Cloud Cost
Cloudera
FairCom DB
FairCom EDGE
IBM Cloud Pak for Applications
IBM Watson Studio
IRI FieldShield
Jenkins
Integrations
ActiveBatch Workload Automation
BMC AMI Ops Automation for Capping
BMC Helix Cloud Cost
Cloudera
FairCom DB
FairCom EDGE
IBM Cloud Pak for Applications
IBM Watson Studio
IRI FieldShield
Jenkins
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
$1000
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
IBM
Founded
1911
Country
United States
Website
www.ibm.com/products/infosphere-datastage
Vendor Details
Company Name
Torana
Founded
2008
Country
United States
Website
icedq.com
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Data Lineage
Database Change Impact Analysis
Filter Lineage Links
Implicit Connection Discovery
Lineage Object Filtering
Object Lineage Tracing
Point-in-Time Visibility
User/Client/Target Connection Visibility
Visual & Text Lineage View
ETL
Data Analysis
Data Filtering
Data Quality Control
Job Scheduling
Match & Merge
Metadata Management
Non-Relational Transformations
Version Control
Product Features
Automated Testing
Hierarchical View
Move & Copy
Parameterized Testing
Requirements-Based Testing
Security Testing
Supports Parallel Execution
Test Script Reviews
Unicode Compliance
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Data Quality
Address Validation
Data Deduplication
Data Discovery
Data Profililng
Master Data Management
Match & Merge
Metadata Management
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge
ETL
Data Analysis
Data Filtering
Data Quality Control
Job Scheduling
Match & Merge
Metadata Management
Non-Relational Transformations
Version Control