Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Leverage cutting-edge NLP advancements by utilizing Haystack's pipeline architecture on your own datasets. You can create robust solutions for semantic search, question answering, summarization, and document ranking, catering to a diverse array of NLP needs. Assess various components and refine models for optimal performance. Interact with your data in natural language, receiving detailed answers from your documents through advanced QA models integrated within Haystack pipelines. Conduct semantic searches that prioritize meaning over mere keyword matching, enabling a more intuitive retrieval of information. Explore and evaluate the latest pre-trained transformer models, including OpenAI's GPT-3, BERT, RoBERTa, and DPR, among others. Develop semantic search and question-answering systems that are capable of scaling to accommodate millions of documents effortlessly. The framework provides essential components for the entire product development lifecycle, such as file conversion tools, indexing capabilities, model training resources, annotation tools, domain adaptation features, and a REST API for seamless integration. This comprehensive approach ensures that you can meet various user demands and enhance the overall efficiency of your NLP applications.
Description
Discover the transformative capabilities of large language models as they redefine Natural Language Processing (NLP) through Spark NLP, an open-source library that empowers users with scalable LLMs. The complete codebase is accessible under the Apache 2.0 license, featuring pre-trained models and comprehensive pipelines. As the sole NLP library designed specifically for Apache Spark, it stands out as the most widely adopted solution in enterprise settings. Spark ML encompasses a variety of machine learning applications that leverage two primary components: estimators and transformers. Estimators possess a method that ensures data is secured and trained for specific applications, while transformers typically result from the fitting process, enabling modifications to the target dataset. These essential components are intricately integrated within Spark NLP, facilitating seamless functionality. Pipelines serve as a powerful mechanism that unites multiple estimators and transformers into a cohesive workflow, enabling a series of interconnected transformations throughout the machine-learning process. This integration not only enhances the efficiency of NLP tasks but also simplifies the overall development experience.
API Access
Has API
API Access
Has API
Integrations
BERT
OpenAI
RoBERTa
APIFuzzer
DPR
Databricks Data Intelligence Platform
Elasticsearch
Faiss
Flair
GPT-3
Integrations
BERT
OpenAI
RoBERTa
APIFuzzer
DPR
Databricks Data Intelligence Platform
Elasticsearch
Faiss
Flair
GPT-3
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
deepset
Founded
2018
Country
Germany
Website
haystack.deepset.ai/
Vendor Details
Company Name
John Snow Labs
Country
United States
Website
sparknlp.org
Product Features
Natural Language Processing
Co-Reference Resolution
In-Database Text Analytics
Named Entity Recognition
Natural Language Generation (NLG)
Open Source Integrations
Parsing
Part-of-Speech Tagging
Sentence Segmentation
Stemming/Lemmatization
Tokenization
Product Features
Natural Language Processing
Co-Reference Resolution
In-Database Text Analytics
Named Entity Recognition
Natural Language Generation (NLG)
Open Source Integrations
Parsing
Part-of-Speech Tagging
Sentence Segmentation
Stemming/Lemmatization
Tokenization