Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Businesses now have numerous options to efficiently train their deep learning and machine learning models without breaking the bank. AI accelerators cater to various scenarios, providing solutions that range from economical inference to robust training capabilities. Getting started is straightforward, thanks to an array of services designed for both development and deployment purposes. Custom-built ASICs known as Tensor Processing Units (TPUs) are specifically designed to train and run deep neural networks with enhanced efficiency. With these tools, organizations can develop and implement more powerful and precise models at a lower cost, achieving faster speeds and greater scalability. A diverse selection of NVIDIA GPUs is available to facilitate cost-effective inference or to enhance training capabilities, whether by scaling up or by expanding out. Furthermore, by utilizing RAPIDS and Spark alongside GPUs, users can execute deep learning tasks with remarkable efficiency. Google Cloud allows users to run GPU workloads while benefiting from top-tier storage, networking, and data analytics technologies that improve overall performance. Additionally, when initiating a VM instance on Compute Engine, users can leverage CPU platforms, which offer a variety of Intel and AMD processors to suit different computational needs. This comprehensive approach empowers businesses to harness the full potential of AI while managing costs effectively.
Description
The Intel® Distribution of OpenVINO™ toolkit serves as an open-source AI development resource that speeds up inference on various Intel hardware platforms. This toolkit is crafted to enhance AI workflows, enabling developers to implement refined deep learning models tailored for applications in computer vision, generative AI, and large language models (LLMs). Equipped with integrated model optimization tools, it guarantees elevated throughput and minimal latency while decreasing the model size without sacrificing accuracy. OpenVINO™ is an ideal choice for developers aiming to implement AI solutions in diverse settings, spanning from edge devices to cloud infrastructures, thereby assuring both scalability and peak performance across Intel architectures. Ultimately, its versatile design supports a wide range of AI applications, making it a valuable asset in modern AI development.
API Access
Has API
API Access
Has API
Integrations
Cameralyze
Cloudbrink
Evoltsoft
Flywheel
Google Cloud Composer
Google Cloud TPU
Hugging Face
Intel Geti
JOpt.TourOptimizer
Keras
Integrations
Cameralyze
Cloudbrink
Evoltsoft
Flywheel
Google Cloud Composer
Google Cloud TPU
Hugging Face
Intel Geti
JOpt.TourOptimizer
Keras
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Founded
1998
Country
United States
Website
cloud.google.com/ai-infrastructure
Vendor Details
Company Name
Intel
Founded
1968
Country
United States
Website
www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
Product Features
Artificial Intelligence
Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Infrastructure-as-a-Service (IaaS)
Analytics / Reporting
Configuration Management
Data Migration
Data Security
Load Balancing
Log Access
Network Monitoring
Performance Monitoring
SLA Monitoring
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization