Average Ratings 0 Ratings
Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
The Gemma family consists of advanced, lightweight models developed using the same innovative research and technology as the Gemini models. These cutting-edge models are equipped with robust security features that promote responsible and trustworthy AI applications, achieved through carefully curated data sets and thorough refinements. Notably, Gemma models excel in their various sizes—2B, 7B, 9B, and 27B—often exceeding the performance of some larger open models. With the introduction of Keras 3.0, users can experience effortless integration with JAX, TensorFlow, and PyTorch, providing flexibility in framework selection based on specific tasks. Designed for peak performance and remarkable efficiency, Gemma 2 is specifically optimized for rapid inference across a range of hardware platforms. Furthermore, the Gemma family includes diverse models that cater to distinct use cases, ensuring they adapt effectively to user requirements. These lightweight language models feature a decoder and have been trained on an extensive array of textual data, programming code, and mathematical concepts, which enhances their versatility and utility in various applications.
Description
We have incorporated Llama 3 into Meta AI, our intelligent assistant that enhances how individuals accomplish tasks, innovate, and engage with Meta AI. By utilizing Meta AI for coding and problem-solving, you can experience Llama 3's capabilities first-hand. Whether you are creating agents or other AI-driven applications, Llama 3, available in both 8B and 70B versions, will provide the necessary capabilities and flexibility to bring your ideas to fruition. With the launch of Llama 3, we have also revised our Responsible Use Guide (RUG) to offer extensive guidance on the ethical development of LLMs. Our system-focused strategy encompasses enhancements to our trust and safety mechanisms, including Llama Guard 2, which is designed to align with the newly introduced taxonomy from MLCommons, broadening its scope to cover a wider array of safety categories, alongside code shield and Cybersec Eval 2. Additionally, these advancements aim to ensure a safer and more responsible use of AI technologies in various applications.
Description
The TinyLlama initiative seeks to pretrain a Llama model with 1.1 billion parameters using a dataset of 3 trillion tokens. With the right optimizations, this ambitious task can be completed in a mere 90 days, utilizing 16 A100-40G GPUs. We have maintained the same architecture and tokenizer as Llama 2, ensuring that TinyLlama is compatible with various open-source projects that are based on Llama. Additionally, the model's compact design, consisting of just 1.1 billion parameters, makes it suitable for numerous applications that require limited computational resources and memory. This versatility enables developers to integrate TinyLlama seamlessly into their existing frameworks and workflows.
API Access
Has API
API Access
Has API
API Access
Has API
Screenshots View All
No images available
Integrations
HTML
JavaScript
AiAssistWorks
AnotherWrapper
AnythingLLM
Bakery
BlueFlame AI
Coginiti
Deasie
Diaflow
Integrations
HTML
JavaScript
AiAssistWorks
AnotherWrapper
AnythingLLM
Bakery
BlueFlame AI
Coginiti
Deasie
Diaflow
Integrations
HTML
JavaScript
AiAssistWorks
AnotherWrapper
AnythingLLM
Bakery
BlueFlame AI
Coginiti
Deasie
Diaflow
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Country
United States
Website
ai.google.dev/gemma
Vendor Details
Company Name
Meta
Founded
2004
Country
United States
Website
llama.meta.com
Vendor Details
Company Name
TinyLlama
Website
github.com/jzhang38/TinyLlama