Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Fuzzing serves as an effective method for identifying software bugs. Essentially, it involves generating numerous randomly crafted inputs for the software to process in order to observe the outcomes. When a program crashes, it usually indicates that there is a problem. Despite being a widely recognized approach, it is often surprisingly straightforward to uncover bugs, including those with potential security risks, in commonly used software. Memory access errors, especially prevalent in programs developed in C/C++, tend to be the most frequently identified issues during fuzzing. While the specifics may vary, the underlying problem is typically that the software accesses incorrect memory locations. Modern Linux or BSD systems come equipped with a variety of fundamental tools designed for file display and parsing; however, most of these tools are ill-equipped to handle untrusted inputs in their present forms. Conversely, we now possess advanced tools that empower developers to detect and investigate these vulnerabilities more effectively. These innovations not only enhance security but also contribute to the overall stability of software systems.

Description

Syzkaller functions as an unsupervised, coverage-guided fuzzer aimed at exploring vulnerabilities within kernel environments, offering support for various operating systems such as FreeBSD, Fuchsia, gVisor, Linux, NetBSD, OpenBSD, and Windows. Originally designed with a focus on fuzzing the Linux kernel, its capabilities have been expanded to encompass additional operating systems over time. When a kernel crash is identified within one of the virtual machines, syzkaller promptly initiates the reproduction of that crash. By default, it operates using four virtual machines for this reproduction process and subsequently works to minimize the program responsible for the crash. This reproduction phase can temporarily halt fuzzing activities, as all VMs may be occupied with reproducing the identified issues. The duration for reproducing a single crash can vary significantly, ranging from mere minutes to potentially an hour, depending on the complexity and reproducibility of the crash event. This ability to minimize and analyze crashes enhances the overall effectiveness of the fuzzing process, allowing for better identification of vulnerabilities in the kernel.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

C
C++
FreeBSD
Fuchsia Service Maintenance Software
NetBSD
OpenBSD

Integrations

C
C++
FreeBSD
Fuchsia Service Maintenance Software
NetBSD
OpenBSD

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Fuzzing Project

Website

fuzzing-project.org

Vendor Details

Company Name

Google

Country

United States

Website

github.com/google/syzkaller

Product Features

Product Features

Alternatives

ClusterFuzz Reviews

ClusterFuzz

Google

Alternatives

ClusterFuzz Reviews

ClusterFuzz

Google
LibFuzzer Reviews

LibFuzzer

LLVM Project
ToothPicker Reviews

ToothPicker

Secure Mobile Networking Lab