Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Fuzzing serves as an effective method for identifying software bugs. Essentially, it involves generating numerous randomly crafted inputs for the software to process in order to observe the outcomes. When a program crashes, it usually indicates that there is a problem. Despite being a widely recognized approach, it is often surprisingly straightforward to uncover bugs, including those with potential security risks, in commonly used software. Memory access errors, especially prevalent in programs developed in C/C++, tend to be the most frequently identified issues during fuzzing. While the specifics may vary, the underlying problem is typically that the software accesses incorrect memory locations. Modern Linux or BSD systems come equipped with a variety of fundamental tools designed for file display and parsing; however, most of these tools are ill-equipped to handle untrusted inputs in their present forms. Conversely, we now possess advanced tools that empower developers to detect and investigate these vulnerabilities more effectively. These innovations not only enhance security but also contribute to the overall stability of software systems.

Description

The Solidity Fuzzing Boilerplate serves as a foundational template designed to simplify the fuzzing process for various components within Solidity projects, particularly libraries. By writing tests just once, developers can easily execute them using both Echidna and Foundry's fuzzing tools. In instances where components require different versions of Solidity, these can be deployed into a Ganache instance with the help of Etheno. To generate intricate fuzzing inputs or to conduct differential fuzzing by comparing outputs with non-EVM executables, HEVM's FFI cheat code can be utilized effectively. Additionally, you can publish the results of your fuzzing experiments without concerns about licensing issues by modifying the shell script to retrieve specific files. If you do not plan to use shell commands from your Solidity contracts, it is advisable to disable FFI since it can be slow and should primarily serve as a workaround. This functionality proves beneficial when testing against complex implementations that are challenging to replicate in Solidity but are available in other programming languages. It is essential to review the commands being executed before running tests in projects that have FFI activated, ensuring a clear understanding of the operations taking place. Always prioritize clarity in your testing approach to maintain the integrity and effectiveness of your fuzzing efforts.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

C
C++
Echidna Finance
Etheno
Foundry
Solidity

Integrations

C
C++
Echidna Finance
Etheno
Foundry
Solidity

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Fuzzing Project

Website

fuzzing-project.org

Vendor Details

Company Name

patrickd

Website

github.com/patrickd-/solidity-fuzzing-boilerplate

Product Features

Product Features

Alternatives

ClusterFuzz Reviews

ClusterFuzz

Google

Alternatives

Echidna Reviews

Echidna

Crytic
ClusterFuzz Reviews

ClusterFuzz

Google
Honggfuzz Reviews

Honggfuzz

Google