Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
The Fuzzbuzz workflow closely resembles other continuous integration and continuous delivery (CI/CD) testing processes, but it stands out because it necessitates the concurrent execution of multiple jobs, adding several additional steps. As a dedicated fuzz testing platform, Fuzzbuzz simplifies the integration of fuzz tests into developers' code, enabling them to execute these tests within their CI/CD pipelines, which is essential for identifying critical bugs and security vulnerabilities before they reach production. Fuzzbuzz seamlessly blends into your existing environment, providing support from the terminal through to CI/CD. You can easily write a fuzz test using your preferred IDE, terminal, or build tools, and once you push your code changes to CI/CD, Fuzzbuzz will automatically initiate the fuzz testing process on the latest updates. You'll receive notifications about any bugs detected through various channels like Slack, GitHub, or email, ensuring you're always informed. Additionally, as new changes are introduced, regressions are automatically tested and compared against previous results, allowing for continuous monitoring of code stability. The moment a change is detected, Fuzzbuzz builds and instruments your code, ensuring that your development process remains efficient and responsive. This proactive approach helps maintain high-quality code and reduces the risk of deploying flawed software.
Description
Syzkaller functions as an unsupervised, coverage-guided fuzzer aimed at exploring vulnerabilities within kernel environments, offering support for various operating systems such as FreeBSD, Fuchsia, gVisor, Linux, NetBSD, OpenBSD, and Windows. Originally designed with a focus on fuzzing the Linux kernel, its capabilities have been expanded to encompass additional operating systems over time. When a kernel crash is identified within one of the virtual machines, syzkaller promptly initiates the reproduction of that crash. By default, it operates using four virtual machines for this reproduction process and subsequently works to minimize the program responsible for the crash. This reproduction phase can temporarily halt fuzzing activities, as all VMs may be occupied with reproducing the identified issues. The duration for reproducing a single crash can vary significantly, ranging from mere minutes to potentially an hour, depending on the complexity and reproducibility of the crash event. This ability to minimize and analyze crashes enhances the overall effectiveness of the fuzzing process, allowing for better identification of vulnerabilities in the kernel.
API Access
Has API
API Access
Has API
Integrations
Bitbucket
C
C++
Debian
FreeBSD
Fuchsia Service Maintenance Software
Git
GitHub
GitLab
Go
Integrations
Bitbucket
C
C++
Debian
FreeBSD
Fuchsia Service Maintenance Software
Git
GitHub
GitLab
Go
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Fuzzbuzz
Country
United States
Website
github.com/fuzzbuzz
Vendor Details
Company Name
Country
United States
Website
github.com/google/syzkaller