Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Flower is a federated learning framework that is open-source and aims to make the creation and implementation of machine learning models across distributed data sources more straightforward. By enabling the training of models on data stored on individual devices or servers without the need to transfer that data, it significantly boosts privacy and minimizes bandwidth consumption. The framework is compatible with an array of popular machine learning libraries such as PyTorch, TensorFlow, Hugging Face Transformers, scikit-learn, and XGBoost, and it works seamlessly with various cloud platforms including AWS, GCP, and Azure. Flower offers a high degree of flexibility with its customizable strategies and accommodates both horizontal and vertical federated learning configurations. Its architecture is designed for scalability, capable of managing experiments that involve tens of millions of clients effectively. Additionally, Flower incorporates features geared towards privacy preservation, such as differential privacy and secure aggregation, ensuring that sensitive data remains protected throughout the learning process. This comprehensive approach makes Flower a robust choice for organizations looking to leverage federated learning in their machine learning initiatives.

Description

Keepsake is a Python library that is open-source and specifically designed for managing version control in machine learning experiments and models. It allows users to automatically monitor various aspects such as code, hyperparameters, training datasets, model weights, performance metrics, and Python dependencies, ensuring comprehensive documentation and reproducibility of the entire machine learning process. By requiring only minimal code changes, Keepsake easily integrates into existing workflows, permitting users to maintain their usual training routines while it automatically archives code and model weights to storage solutions like Amazon S3 or Google Cloud Storage. This capability simplifies the process of retrieving code and weights from previous checkpoints, which is beneficial for re-training or deploying models. Furthermore, Keepsake is compatible with a range of machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, enabling efficient saving of files and dictionaries. In addition to these features, it provides tools for experiment comparison, allowing users to assess variations in parameters, metrics, and dependencies across different experiments, enhancing the overall analysis and optimization of machine learning projects. Overall, Keepsake streamlines the experimentation process, making it easier for practitioners to manage and evolve their machine learning workflows effectively.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

PyTorch
Python
TensorFlow
scikit-learn
Amazon S3
Amazon Web Services (AWS)
Android
Apple iOS
Docker
Google Cloud Platform
Google Cloud Storage
Hugging Face
JAX
JSON
MXNet
Microsoft Azure
NVIDIA Jetson
NumPy
Raspberry Pi OS
pandas

Integrations

PyTorch
Python
TensorFlow
scikit-learn
Amazon S3
Amazon Web Services (AWS)
Android
Apple iOS
Docker
Google Cloud Platform
Google Cloud Storage
Hugging Face
JAX
JSON
MXNet
Microsoft Azure
NVIDIA Jetson
NumPy
Raspberry Pi OS
pandas

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Flower

Founded

2023

Country

Germany

Website

flower.ai/

Vendor Details

Company Name

Replicate

Country

United States

Website

keepsake.ai/

Product Features

Artificial Intelligence

Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Version Control

Branch Creation / Deletion
Centralized Version History
Code Review
Code Version Management
Collaboration Tools
Compare / Merge Branches
Digital Asset / Binary File Storage
Isolated Code Branches
Option to Revert to Previous
Pull Requests
Roles / Permissions

Alternatives

Keepsake Reviews

Keepsake

Replicate

Alternatives