Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
ESMFold demonstrates how artificial intelligence can equip us with innovative instruments to explore the natural world, akin to the way the microscope revolutionized our perception by allowing us to observe the minute details of life. Through AI, we can gain a fresh perspective on the vast array of biological diversity, enhancing our comprehension of life sciences. A significant portion of AI research has been dedicated to enabling machines to interpret the world in a manner reminiscent of human understanding. However, the complex language of proteins remains largely inaccessible to humans and has proven challenging for even the most advanced computational systems. Nevertheless, AI holds the promise of unlocking this intricate language, facilitating our grasp of biological processes. Exploring AI within the realm of biology not only enriches our understanding of life sciences but also sheds light on the broader implications of artificial intelligence itself. Our research highlights the interconnectedness of various fields: the large language models powering advancements in machine translation, natural language processing, speech recognition, and image synthesis also possess the capability to assimilate profound insights about biological systems. This cross-disciplinary approach could pave the way for unprecedented discoveries in both AI and biology.
Description
Introducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.
API Access
Has API
API Access
Has API
Integrations
1min.AI
AI-FLOW
AiAssistWorks
Aili
Airtrain
AlphaCorp
Azure Marketplace
ConfidentialMind
GaiaNet
Gopher
Integrations
1min.AI
AI-FLOW
AiAssistWorks
Aili
Airtrain
AlphaCorp
Azure Marketplace
ConfidentialMind
GaiaNet
Gopher
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Meta
Founded
2004
Country
United States
Website
github.com/facebookresearch/esm
Vendor Details
Company Name
Meta
Founded
2004
Country
United States
Website
ai.meta.com/llama/